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We present SphericalNR, a new framework for the publicly available Einstein Toolkit that nu-
merically solves the Einstein field equations coupled to the equations of general relativistic magne-
tohydrodynamics (GRMHD) in a 3+1 split of spacetime in spherical coordinates without symmetry
assumptions. The spacetime evolution is performed using reference-metric versions of either the
Baumgarte-Shapiro-Shibata-Nakamura equations or the fully covariant and conformal Z4 system
with constraint damping. We have developed a reference-metric version of the Valencia formulation
of GRMHD with a vector potential method, guaranteeing the absence of magnetic monopoles during
the evolution. In our framework, every dynamical field (both spacetime and matter) is evolved using
its components in an orthonormal basis with respect to the spherical reference-metric. Furthermore,
all geometric information about the spherical coordinate system is encoded in source terms appearing
in the evolution equations. This allows for the straightforward extension of Cartesian high-resolution
shock-capturing finite volume codes to use spherical coordinates with our framework. To this end, we
have adapted GRHydro, a Cartesian finite volume GRMHD code already available in the Einstein

Toolkit, to use spherical coordinates. We present the full evolution equations of the framework,
as well as details of its implementation in the Einstein Toolkit. We validate SphericalNR by
demonstrating it passes a variety of challenging code tests in static and dynamical spacetimes.

I. INTRODUCTION

The detection of gravitational waves (GW) from bi-
nary black hole (BBH) mergers via the ground-based
LIGO and VIRGO detectors [1–6] and the simultane-
ous detection of GW and electromagnetic (EM) radia-
tion from binary neutron star (BNS) mergers [7–9] has
opened a new window into the Universe. Accurate nu-
merical simulations of compact binary mergers are cru-
cial for estimating the physical parameters of detected
systems [10], and for informing physical models about
the evolution of matter at nuclear densities in the post-
merger remnant of BNSs and BHNSs [11, 12]. However,
the full self-consistent numerical simulation of a compact
object merger through coalescence and subsequent post-
merger evolution at high resolution is an extremely chal-
lenging computational problem involving vast differences
in length and timescales, as well as different approximate
symmetries during the stages of the evolution. In partic-
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ular, during the inspiral and merger, the absence of ap-
proximate axisymmetry lends itself to the use of Carte-
sian coordinates, while the postmerger remnant has ap-
proximate symmetries that are better captured by using
spherical coordinates.

In the field of numerical relativity it is now possi-
ble to do self-consistent simulations of compact object
binary mergers: The first general relativistic hydrody-
namics (GRHD) BNS merger simulation [13], the break-
through simulations of BBH mergers [14–16], the first
GRHD black hole neutron star (BHNS) merger simula-
tion [17], the first general relativistic magnetohydrody-
namics (GRMHD) BNS merger simulations [18, 19], and
the first GRMHD simulation of BHNS mergers [20]. Self-
consistent simulations of these multimessenger sources
requires the accurate modeling of the dynamical space-
time evolution and magnetohydrodynamic (MHD) flows
within and near compact objects. To this end, many
codes have been written that solve the equations of
GRMHD. Generally such codes fall into two categories:
GRMHD codes coupled to a 3+1 dynamical space-
time solver (see e.g. [21–34]), and GRMHD codes that
adopt analytical expressions for the spacetime geometry
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– which could be either exact, if the spacetime is sta-
tionary, or approximate for some dynamical spacetimes
(see e.g. [35–45]). In general, the codes coupled to a 3+1
spacetime solver perform the fluid evolution on Carte-
sian or multipatch grids, while many of the fixed back-
ground spacetime codes employ curvilinear coordinates.
A notable exception are the codes of [26] and [27], which
solve the fluid equations in curvilinear coordinates, cou-
pled to a dynamical spacetime solver in an approximate,
constrained evolution formulation of the Einstein field
equations [46–48], which is a generalization of the con-
formal flatness condition [49, 50].

Often, numerical error in conservation of momentum is
smallest in the direction of coordinate lines. Accordingly,
codes written in Cartesian coordinates conserve linear
momentum well, while codes using spherical coordinates
conserve angular momentum well. In GRMHD, momenta
are only conserved when spacetime (rather than just co-
ordinate) symmetries are present, due to the appearance
of source terms in the evolution equations. Many as-
trophysical systems of interest to multimessenger astro-
physics possess a natural axisymmetry at first approx-
imation, so that one expects a better conservation of
angular momentum in spherical coordinates, which al-
low the azimuthal coordinate to be aligned with the di-
rection of this symmetry. Examples include (see refer-
ences within the cited review articles): core-collapse su-
pernovae [51, 52], compact binary merger remnants [53–
57], pulsars [58], magnetars [59–61], and self-gravitating
accretion disks [62]. While there are techniques to miti-
gate the nonconservation of angular momentum in Carte-
sian coordinates (see e.g. [63–65]), it would generally be
more desirable to use numerical grids with spherical sam-
pling, representing all tensors and vectors in the spher-
ical basis. Evolving Einstein’s field equations in spheri-
cal coordinates introduces both conceptual and computa-
tional problems associated with coordinate singularities,
but many of these issues have been resolved in recent
years.

Among the formalisms of Einstein’s field equations
most commonly used in numerical simulations is the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [66, 67]. Choices made in the original version of this
formulation are suitable in Cartesian coordinates only,
but a generalization involving a reference-metric formal-
ism allows for applications in any coordinate system (see,
e.g., [68–72]). In the absence of spherical symmetry, co-
ordinate singularities can be handled by properly rescal-
ing components of tensors [73–75], which is equivalent to
expressing all tensor components in a frame that is or-
thogonal with respect to the reference-metric. In [76], the
formalism was extended to the Z4 formalism (see, e.g.,
[77–79]). The SENR/NRPy+ code [80] provides a flexible
computational framework for the implementation of the
formalism in a broad class of coordinate systems. Using
this framework, we previously implemented this approach
in the Einstein Toolkit [81].

In this work we extend the framework presented in [81]

to evolve the GRMHD equations in a reference-metric
formalism, and add a constraint-damping formulation
for the spacetime evolution to the existing framework.
Our new code applies this strategy by coupling the
GRMHD equations with a fully dynamical spacetime
evolution via the BSSN or fully covariant and confor-
mal Z4 (fZZC4) system [76] on three-dimensional spher-
ical coordinate grids (i.e., no symmetry assumptions are
made). The GRMHD evolution equations are evolved us-
ing a vector potential method. We also use the moving-
puncture gauge conditions [15, 16]. To our knowledge,
SphericalNR is the first framework solving the cou-
pled BSSN/fCCZ4 and GRMHD equations in three-
dimensional spherical coordinate grids without symmetry
assumptions.

The paper is organized as follows: In Sec. II, we de-
scribe the evolution equations for both spacetime and
GRMHD in spherical coordinates. In Sec. III we describe
the implementation of the GRMHD reference-metric evo-
lution formalism in the Einstein Toolkit [82]. Code
tests are presented in Sec. IV. Finally, Sec. V contains
conclusions and discussions. Throughout this paper and
in the code implementation we use geometrized and ratio-
nalized (geometrized Heaviside-Lorentz) units in which
c = G = M� = ε0 = µ0 = 1, where c, G, M�, ε0, and µ0

are the speed of light, gravitational constant, solar mass,
vacuum permittivity and vacuum permeability, respec-
tively. Latin indices denote spatial indices, running from
1 to 3; Greek indices denote spacetime indices, running
from 0 to 3 (0 is the time coordinate); and the Einstein
summation convention is used.

II. BASIC EQUATIONS: DYNAMICAL
SPACETIME AND GRMHD EQUATIONS IN

SPHERICAL COORDINATES

A. Spacetime evolution in spherical coordinates

We dynamically evolve the gravitational fields using a
numerical relativity framework in spherical coordinates
implemented using the Einstein Toolkit infrastructure
(see [81]). Our framework builds upon a reference-metric
formulation [70–72] of the BSSN formalism [66, 67, 83].
We appropriately scale out singular factors from compo-
nents of tensors so that, for nonsingular spacetimes, all
numerically evolved variables remain regular even at the
origin and on the polar axis (see [73, 75]). In this paper we
extend the spacetime evolution code described in [81] to
include the fCCZ4 formalism (see [76]), which applies the
same reference-metric formalism and rescaling approach
to the CCZ4 evolution equations [79, 84]. This repre-
sents a conformal reformulation of the constraint-damped
Z4 system (see [77, 85, 86]; see also [78] for an alterna-
tive conformal reformulation of Z4). We have now imple-
mented the fCCZ4 formalism in the SphericalNR frame-
work, and therefore provide, as a reference, key equations
below.
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The constraint-damped Z4 system [77, 85, 86] replaces
Einstein’s equations by

Rµν +∇µZν +∇νZµ −
κ1

α
[nµZν + nνZµ

− (1 + κ2)gµνnλZλ] = 8π(Tµν −
1

2
gµνT ), (1)

where Rµν is the (spacetime) Ricci tensor, gµν the space-
time metric, ∇µ its associated covariant derivative, Tµν
the stress-energy tensor, T ≡ gµνTµν its trace, Zν a four-
vector of constraints, and α the lapse function. We will
shortly associate the timelike vector nµ with the normal
on spatial slices. Finally, κ1 (units of inverse length) and
κ2 (dimensionless) are two damping coefficients, and all
nonconstant constraint related modes are damped when
κ1 > 0 and κ2 > −1 [86].

Following the discussion in [84] regarding the stabil-
ity of the evolution system in the presence of black holes
(BH), we have redefined κ1 → κ1/α. The Z4 system re-
duces to the Einstein equations when the constraint vec-
tor Zµ vanishes.

We start with a 3 + 1 split of spacetime (see [87]) and
foliate the four-dimensional spacetime with a set of non-
intersecting spacelike hypersurfaces Σ. We denote the
future-pointing, timelike normal on Σ as nµ, and refer
to the projection of the spacetime metric gµν onto Σ as
the spatial metric

γµν = gµν + nµnν . (2)

Expressing the normal vector in terms of a lapse function
α and a shift vector βi,

nµ =

(
1

α
,−β

i

α

)
(3)

or

nµ = (−α, 0), (4)

we may write the four-dimensional line element as

ds2 = gµνdx
µdxν

= −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (5)

and the spacetime metric gµν as

gµν =

(
−α2 + βiβ

i βj
βi γij

)
. (6)

As in the BSSN formalism we conformally rescale the
spatial metric according to

γ̄ij = e−4φγij , (7)

where γ̄ij is the conformally related metric and eφ the
conformal factor. The latter can be written as

e4φ = (γ/γ̄)1/3, (8)

where γ and γ̄ are the determinants of the physical and
conformally related metric, respectively. We will assume
that

∂tγ̄ = 0, (9)

meaning that γ̄ remains equal to its initial value through-
out the evolution. This choice, referred to as the “La-
grangian” choice in [71], simplifies some expressions in
particular in the context of the GRMHD evolution, as
explained below. We also rescale the trace-free part of
the extrinsic curvature according to

Āij = e−4φ

(
Kij −

1

3
γijK

)
, (10)

where Kij is the physical extrinsic curvature and K ≡
γijKij its trace.

The central idea of the reference-metric formalism1 is
to express the conformally related metric as the sum of
a background metric γ̂ij and deviations hij (which need
not to be small),2

γ̄ij = γ̂ij + hij . (11)

For our purposes it is particularly convenient to choose
as the reference-metric the flat metric in spherical coor-
dinates,

γ̂ij =

1 0 0
0 r2 0
0 0 r2sin2θ

 . (12)

Another key ingredient is evolving vector and tensor com-
ponents in the orthonormal basis with respect to γ̂ij in-
stead of components in the spherical coordinate basis. To

this end, we introduce a set of basis vectors ê
{k}
i that are

orthonormal with respect to the background metric γ̂ij :

γ̂ij = δ{k}{l}ê
{k}
i ê

{l}
j . (13)

Since γ̂ij is diagonal, the orthonormal vector basis tetrad
and its inverse are given by

ê
{k}
i = diag(1, r, r sin θ), (14)

êk{i} = diag(1, 1/r, 1/(r sin θ)), (15)

1 Splitting the metric into background and departures from the
background (which need not to be small) is also done in bimet-
ric formalisms [88–94] in general relativity, in which reference-
metrics are employed to give physical meaning to pseudotensors
in curvilinear coordinates. We emphasize that we do not consider
extensions of general relativity here; rather, we use the reference-
metric only as a convenient approach to express Einstein’s equa-
tions (see also [68, 69, 95, 96]).

2 Strictly speaking, it is sufficient to introduce a reference con-
nection only (e.g. [71]), but it is convenient to assume that this
connection is associated with a reference-metric.
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where we have adopted a notation involving plain Latin
and Latin indices surrounded with curly braces: The com-
ponents of a tensor T in the standard coordinate basis
will be denoted using the former, while the tensor com-
ponents in the background orthonormal basis will be de-
noted by the latter, respectively. In this notation, we may
write the deviation tensor hij as

hij = ê
{k}
i ê

{l}
j h{k}{l} (16)

and similarly write Āij as3

Āij = ê
{k}
i ê

{l}
j Ā{k}{l}. (17)

While we will write most equations in terms of coordinate
components (i.e. indices without curly braces), the code
uses components in the orthogonal basis (i.e. with curly
indices) as dynamical variables.

As in the original BSSN formalism, we introduce con-
formal connection functions Λ̄i as independent variables.
In the context of the reference-metric formalism the Λ̄i

satisfy the initial constraint

Λ̄i −∆Γi = 0, (18)

where

∆Γi ≡ γ̄jk∆Γijk (19)

and

∆Γijk ≡ Γ̄ijk − Γ̂ijk. (20)

Contrary to the Christoffel symbols themselves, differ-
ences between Christoffel symbols transform as rank-3
tensors. We compute the ∆Γijk from

∆Γijk =
1

2
γ̄il
(
D̂j γ̄kl + D̂kγ̄jl − D̂lγ̄jk

)
=

1

2
γ̄il
(
D̂jhkl + D̂khjl − D̂lhjk

)
, (21)

where D̂i is the covariant derivative associated with the
reference-metric γ̂ij , and where we have used D̂iγ̂jk = 0
in the second equality. Derivatives of coordinate compo-
nents of tensors are evaluated by using the chain rule

to analytically take derivatives of the basis vectors ê
{k}
i ,

while the orthonormal components are finite-differenced
numerically in the code, e.g.

∂khij = ê
{l}
i ê

{m}
j ∂kh{l}{m} + h{l}{m}∂k

(
ê
{l}
i ê

{m}
j

)
.

(22)

3 This is a novel notation since, in standard references, different
symbols are used for rescaled quantities. For instance, in [73],
the pairs {hij , h{i}{j}}, {Āij , Ā{k}{l}} are denoted as {εij , hij},
{Āij , aij}, respectively.

Similar to our treatment of the metric and extrinsic cur-
vature we write

Λ̄i = êi{j}Λ̄
{j} =

 Λ̄{r}

Λ̄{θ}/r
Λ̄{ϕ}/(r sin θ)

 (23)

and evolve the orthonormal components Λ̄{i} in our code.
One of the attractive features of the reference-metric

formalism is that all quantities, including the conformal
connection functions Λ̄i, transform as tensor densities of
weight zero4 (see [71]).

We now extend the above formalism to the Z4 formu-
lation, following [76]. We start with a 3+1 decomposition
of the constraint vector Zµ,

Zµ = g ν
µ Zν = γ ν

µ Zν − nµnνZν , (24)

and define

Θ ≡ −nλZλ = αZ0, (25)

Zi ≡ γλi Zλ. (26)

In Eq. (29) below we will absorb the spatial parts Zi into
the connection functions Λ̄i, but we will evolve Θ as a
new independent variable.

In order to write the evolution equations of the fCCZ4
system, we first define a new tensor

R̄Z4
ij ≡ R̄ij +DiZj +DjZi, (27)

where Di is the covariant derivative associated with the
spatial metric γij and R̄ij is the Ricci tensor associated
with the conformal metric γ̄ij ,

R̄ij = −1

2
γ̄klD̂kD̂lγ̄ij + γ̄k(iD̂j)∆Γk + ∆Γk∆Γ(ij)k

+ γ̄kl(2∆Γmk(i∆Γj)ml + ∆Γmik∆Γmjl), (28)

where parentheses around indices indicate the symmetric
part of a tensor: T(ij) ≡ 1

2 (Tij +Tji). We next define new
conformal connection functions according to

Λ̃i ≡ ∆Γi + 2γ̄ijZj , (29)

where we have used a tilde in order to distinguish these
objects from Λ̄i. We then have

Zi =
1

2
e−4φ(Λ̃i −∆Γi). (30)

4 A tensor density of weight w acquires a power Jw in a coordinate

transformation, where J ≡ det|Ji′j | is the determinant of the Ja-

cobian matrix of the coordinate transformation Ji
′
j ≡ ∂xi

′

∂xj
. For

example, a rank (2,0) tensor density of weight w transforms as:

T i′j′ = JwJi
′
k J

j′
l T kl. Tensor densities of weight zero therefore

transform as ordinary (or absolute) tensors with familiar coordi-
nate transformations.
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With these definitions, we may now write RZ4
ij as

R̄Z4
ij =− 1

2
γ̄klD̂kD̂lγ̄ij

+ γ̄k(iD̂j)(Λ̃k − 2e4φZk) +DiZj +DjZi
+ ∆Γk∆Γ(ij)k

+ γ̄kl(2∆Γmk(i∆Γj)ml + ∆Γmik∆Γmjl). (31)

Combining the terms γ̄k(iD̂j)(−2e4φZk) and DiZj+DjZi
it can be seen that all partial derivatives ∂iZj in R̄Z4

ij

cancel out exactly, meaning that RZ4
ij reduces to

R̄Z4
ij = R̄ij − 8Z(i∂j)φ+ 2γk(i(Γ

k
j)l − Γ̂kj)l)Z

l. (32)

With the above, and defining ∂0 ≡ ∂t − Lβ , where Lβ
is the Lie derivative along the shift βi, we arrive at the
following set of coordinate basis evolution equations for
the fCCZ4 system:

∂0γ̄ij = −2

3
γ̄ijD̄kβk − 2αĀij ,

∂0φ =
1

6
D̄iβi −

1

6
αK,

∂0Āij = −2

3
ĀijD̄kβk − 2αĀikĀ

k
j + αĀij(K − 2Θ)

+ e−4φ[−2αD̄iD̄jφ+ 4αD̄iφD̄jφ
+ 4D̄(iαD̄j)φ− D̄iD̄jα
+ α(R̄Z4

ij − 8πSij)]
TF,

∂0K = e−4φ[α(R̄Z4 − 8D̄iD̄iφ− 8D̄2φ)

− (2D̄iαD̄iφ+ D̄2α)] + α(K2 − 2ΘK)

− 3κ1(1 + κ2)Θ + 4πα(S − 3E),

∂0Θ =
1

2
α[e−4φ(R̄Z4 − 8D̄iφD̄iφ− 8D̄2φ)

− ĀijĀij +
2

3
K2 − 2ΘK]

− Zi∂iα− κ1(2 + κ2)Θ− 8παE,

∂0Λ̃i = γ̄jkD̂jD̂kβi +
2

3
∆ΓiD̄jβj +

1

3
D̄iD̄jβj

− 2Ājk(δij∂kα− 6αδij∂kφ− α∆Γijk)

− 4

3
αγ̄ij∂jK + 2γ̄ij(α∂jΘ−Θ∂jα)− 4

3
αKe4φZi

− 2κ1e
4φZi + 2κ3e

4φ(
2

3
ZiD̂kβk − ZkD̂kβi)

− 16παγ̄ijSj .

Here []TF denotes the trace-free part of a tensor: TTF
ij ≡

Tij − 1
3γijT

k
k, and κ3 is a constant that determines the

covariance of the equations, in particular κ3 = 1 (the
choice adopted for all simulations presented in this work),
corresponds to full covariance [79]. Unlike in [76], we have
absorbed all covariant derivatives of Zi in R̄Z4

ij , meaning
that no derivatives of the constraint vector appear in the
above equations.

During the time evolution, we continuously enforce
∂tγ̄ = 0, as well as the constraint Āii = 0. We have
also implemented the χ = e4φ [15] and W = e2φ [97]
variants of the conformal factor evolution, resulting in
the following evolution equations:

∂0χ = −2

3
χD̄iβi +

2

3
χαK, (33)

∂0W = −1

3
W D̄iβi +

1

3
WαK. (34)

The choice between these variants can be made at run-
time.

In order to close the evolution system we need to
choose a gauge. For all dynamical spacetime evolu-
tion simulations presented in this paper we adopt the
“standard gauge”, or “moving-puncture gauge”, mean-
ing 1+log slicing

∂tα = −2(K − 2Θ) + βi∂iα (35)

for the lapse (see [98]) and a Γ-driver5

∂tβ
i = Bi + βjD̂jβi, (36)

∂tB
i =

3

4
(∂tΛ̃

i − βjD̂jΛ̃i) + βjD̂jBi − ηBi (37)

for the shift (see [99]). Here η is a damping parameter
with dimensions of inverse length, and we have adopted
the covariant form of [71]. In the code, the inclusion of
shift advection terms can be turned off by the user at
runtime.

As noted above, the actual evolved tensors
in the code are not in the coordinate basis{
γ̄ij , Āij , Λ̃

i, βi, Bi = β̇i
}

, but rather the orthonormal

basis
{
h{i}{j}, Ā{i}{j}, Λ̃

{i}, β{i}, B{i} = β̇{i}
}

, respec-

tively. The remaining evolved quantities {α,K,Θ, φ} are
scalars and thus do not depend on choice of basis.

Finally, the matter sources in the spacetime evolution
equations are given by projections of the stress-energy
tensor, namely

E ≡ nµnνTµν =
1

α2

(
Ttt − 2βiTti + βiβjTij

)
, (38)

Si ≡ −γiµnνTµν = − 1

α
Tti +

1

α
βjTij , (39)

Sij ≡ γiµγjνTµν , (40)

S ≡ γijSij . (41)

While we have only presented the fCCZ4 equations
above, the user can select to evolve the BSSN system
at runtime as well.

5 The Γ-driver owes its name to the appearance of the conformal
connection functions Γ̃i introduced in [67]. While we use Λ̃i here,
rather than Γ̃i, we still use the name Γ-driver for this gauge
condition.
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B. GRMHD in the reference-metric formalism

In this section we review the reference-metric formal-
ism for GRHD presented in [74, 75] and extend it to
GRMHD, using a vector potential evolution scheme to
guarantee the absence of magnetic monopoles.

1. Conservation laws in four-dimensional form

The evolution of a magnetized fluid is governed by the
conservation of baryon number

∇µ(ρuµ) = 0, (42)

which results in the continuity equation, and the conser-
vation of energy-momentum

∇µTµν = ∇µ(Tµνmatter + TµνEM) = 0, (43)

which results in the (relativistic) Euler equation and the
conservation of total energy. Assuming a perfect fluid,
the fluid stress-energy tensor Tµνmatter is given by

Tµνmatter = ρhuµuν + Pgµν , (44)

where ρ is the rest mass density, P the fluid pressure,
h = 1+ε+P/ρ the specific enthalpy, ε the internal energy
density, and uµ the fluid four-velocity, respectively.

In terms of the Faraday tensor Fµν , the EM stress-
energy tensor is 6

TµνEM = FµλF νλ −
1

4
gµνFλκFλκ. (45)

We next decompose the Faraday tensor Fµν as

Fµν = UµEν(U) − U
νEµ(U) + εµνλκUλBκ(U), (46)

where

εµνλκ ≡ −1√
−g

[µνλκ], (47)

and where [µνλκ] is the totally antisymmetric Levi-
Civita symbol (= +(−)1 for even (odd) permutations of
[0123], and 0 if any two indices are repeated). Here Eµ(U)

and Bµ(U) are the electric and magnetic fields measured

by an observer with generic four-velocity Uµ,

Eµ(U) = FµνUν , Bµ(U) =
1

2
εµνκρUνFρκ. (48)

6 The Heaviside-Lorentz (HL) units we adopt in this work are ra-
tionalized, as no explicit factors of 4π appear in the Maxwell
equations in these units. Electric and magnetic fields in HL
and Gauss units are therefore related by a factor of

√
4π:

Eµ
[Gauss]

=
√

4πEµ
[HL]

, Bµ
[Gauss]

=
√

4πBµ
[HL]

. Consequently, in

Gauss units, the EM stress-energy tensor is defined as TµνEM =
1
4π

(FµλF νλ − 1
4
gµνFλκFλκ)[Gauss].

Both Eµ(U) and Bµ(U) are orthogonal to Uµ, i.e. Eµ(U)Uµ =

Bµ(U)Uµ = 0.

In the following we focus on two observers of particular
interest, namely observers comoving with the fluid (i.e.,
with four-velocity Uµ = uµ) and normal observers (with
four-velocity Uµ = nµ). Following convention, we denote
the fields observed by the former with Eµ(u) and Bµ(u), but

the latter simply with Eµ = Eµ(n) and Bµ = Bµ(n).

In the ideal MHD limit we assume that the fluid acts
as a perfect conductor, meaning that the electric field
observed by an observer comoving with the fluid vanishes:

Eµ(u) = Fµνuν = 0. (49)

Thus in this approximation Fµν , which generally depends
on both electric and magnetic fields, can be expressed in
terms of magnetic fields alone,

Fµν = εµνλκuλB
(u)
κ , (50)

and ∗Fµν , the dual of the Faraday tensor, as

∗Fµν =
1

2
εµνλκFλκ = uµBν(u) − u

νBµ(u). (51)

In the ideal MHD limit we can also write the magnetic
field Bµ(u) as a projection of Bµ along the fluid four-

velocity uν ,

Bµ(u) =
1

W
PµνB

ν , (52)

where Pµν = gµν + uµuν , and where we have introduced
the Lorentz factor W between the fluid and normal ob-
servers, W ≡ −nµuµ = αut. Inserting (52) into (51)
yields

∗Fµν =
1

W
(uµBν − uνBµ) . (53)

Introducing the abbreviation7

bµ ≡ Bµ(u) (54)

we can write the electromagnetic stress-energy tensor as

TµνEM =

(
uµuν +

1

2
gµν
)
b2 − bµbν , (55)

where b2 ≡ bµbµ; so that the total stress-energy tensor
Tµν becomes

Tµν = ρ h∗uµuν + P ∗gµν − bµbν . (56)

7 Similarly to differences in the EM stress-energy tensor, treat-
ments that adopt Gauss units ([22, 29, 36, 38, 41]) rather than
Lorentz-Heaviside units ([21, 23–28, 30–35, 37, 39, 40, 42–45])
often use the definition bµ ≡ Bµ

(u)
/
√

4π instead of (54). The re-

sulting fields bµ, however, are again identical in both treatments,
so that expressions for the stress-energy tensor, for example, take
the same from when written in terms of bµ, see (55).
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Here we have defined h∗ = 1+ ε+(P + b2)/ρ as the mag-
netically modified specific enthalpy and P ∗ = P + b2/2
as the magnetically modified isotropic pressure. Finally,
the evolution of the magnetic field is governed by the
homogeneous Maxwell equations

∇ν(∗Fµν) = 0. (57)

2. The 3+1 GRMHD equations in the reference-metric
formalism

We now recast the above conservation laws using both
a 3+1 split and a reference-metric approach. The result
will be a set of equations that is suitable for numeri-
cal integration in spherical coordinates, and that meshes
well with the form of the field equations as presented in
Sec. II A. The fluid equations have been previously de-
rived in [74, 75], and we will extend the formalism to the
GRMHD equations.

The key idea is to repeatedly use identities for diver-
gences (see, e.g., Problem 7.7 in [100]). For the continuity
equation (42), for example, we use

∇νV ν =
1√
|g|
∂ν(
√
|g|V ν) (58)

to arrive at

0 = ∇ν(ρuν) =
1√
−g

∂ν(
√
−gρuν)

=
1√
−g
(
∂t(
√
−gρut) + ∂i(

√
−gρui)

)
= ∂t(e

6φ√γ̄ρW ) + ∂i
(
αe6φ√γ̄ρW v̄i

)
. (59)

Here we have defined

vi ≡ 1

W
γiνu

ν =
ui

W
+
βi

α
(60)

as the fluid three-velocity and

v̄i ≡ vi − βi

α
=
ui

W
(61)

as the “advection velocity”. We have also written the
square root of the determinant of the spacetime metric√
−g as

√
−g = α

√
γ = αe6φ√γ̄. (62)

Equation (59) is the continuity equation in a form that
is often referred to as the “Valencia” form of the equa-
tions (see [101]). This version of the equations is well
suited for simulations in Cartesian coordinates, but in
curvilinear coordinates the vanishing of the determinant
γ̄ may cause numerical problems. Following [74], we apply
the identity (58) again, and convert the partial deriva-

tives ∂i to covariant derivatives D̂i associated with the

background (reference) metric γ̂ij ,
8

0 = ∂t(e
6φ
√
γ̄/γ̂ρW ) + D̂i(αe6φ

√
γ̄/γ̂ ρW v̄i). (63)

Note that the combination γ̄/γ̂ remains finite for regular
spacetimes. We now define the conserved density D

D ≡ e6φ
√
γ̄/γ̂ρW (64)

and the conserved density flux fD

(fD)i ≡ αD v̄i (65)

to write the continuity equation in the form

∂tD + D̂i(fD)i = 0. (66)

We note that a similar strategy is followed in the CoCoNuT
code, without explicitly mentioning the reference-metric
(see e.g. [102]). For reasons that will become apparent in
Sec. II D below, we will implement the equation numer-
ically as:

∂tD + ∂i(fD)i = −(fD)iΓ̂jij . (67)

We proceed similarly for the conservation of stress en-
ergy (43), except that we now use the identity

∇λTλµ =
1√
|g|
∂λ(
√
|g|Tλµ )− Tλσ Γσλµ (68)

twice. The spatial projection of (43) then yields the rel-
ativistic Euler equation

∂tSj + D̂i(fS)ij = (sS)j (69)

or

∂tSj + ∂i(fS)ij = (sS)j − (fS)ijΓ̂
k
ik + (fS)ikΓ̂kij , (70)

where we have defined the conserved momentum

Sj ≡ e6φ
√
γ̄/γ̂T ij = e6φ

√
γ̄/γ̂(ρh∗W 2vj − αb0bj), (71)

the conserved momentum density fluxes

(fS)ij ≡ α(Sj v̄
i + e6φ

√
γ̄/γ̂ P ∗δij − e6φ

√
γ̄/γ̂ bjB

i/W ),
(72)

and where the source term is given by

(sS)j = αe6φ
√
γ̄/γ̂

(
−T 00α∂jα+ T 0

i D̂jβi

+
1

2
(T 00βiβk + 2T 0iβk + T ik)D̂jγik

)
(73)

(see [74] for a detailed derivation). The terms D̂jγik can
be evaluated from

D̂jγik = e4φ(4γ̄ik∂jφ+ D̂j γ̄ik), (74)

8 We will assume throughout that the reference-metric γ̂ij is inde-
pendent of time.
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where the D̂j γ̄ik = D̂jhik are computed already in (21).
Projecting the conservation of stress energy (43) along

nν and subtracting the continuity Eq. (42) yields

∇µ (nνT
νµ − ρuµ) = Tµν∇νnµ. (75)

We again apply the identity (58) twice to arrive at the
energy equation

∂tτ + D̂i(fτ )i = sτ (76)

or

∂tτ + ∂i(fτ )i = sτ − (fτ )iΓ̂jij , (77)

where we have defined τ as the total conserved energy
density subtracting the conserved density D9:

τ ≡ e6φ
√
γ̄/γ̂(ρh∗W 2 − P ∗ − (αb0)2)−D, (78)

the conserved energy flux

(fτ )i ≡ α(τ v̄i + e6φ
√
γ̄/γ̂ P ∗vi − αe6φ

√
γ̄/γ̂ b0Bi/W ),

(79)
and where the source term is given by [74]

sτ = αe6φ
√
γ̄/γ̂(T 00(βiβjKij − βi∂iα)

+ T 0i(2βjKij − ∂iα) + T ijKij). (80)

In the above equations, both Bi and bµ = Bµ(u) make an

appearance. The two fields are related by (52), so that
we can always compute Bµ(u) from Bµ. Specifically, we

contract (52) with nµ to obtain

b0 =
WBivi
α

, (81)

while a spatial projection of (52) yields

bi =
Bi

W
+W (Bjvj)v̄

i. (82)

We also have

b2 =
BiBi
W 2

+ (Bivi)
2. (83)

We now adopt the same approach to rewrite Maxwell’s
equations (57). Since the Faraday tensor (as well as its
dual) is antisymmetric, we now use the identity

∇νAµν =
1√
|g|
∂ν

(√
|g|Aµν

)
, (84)

9 The motivation to subtract the continuity equation from the pro-
jection of the stress-energy conservation along nµ(75) was to ar-
rive at an evolution for τ : It correctly recovers the Newtonian
limit and is numerically more accurate than evolving the total
conserved energy density (see e.g. [23, 103, 104]).

for antisymmetric tensors Aµν . Inserting (53) into (57)
and using (84) we obtain

∂t(
√
γBµ) = ∂i

(
α
√
γ

W
(uµBi − uiBµ)

)
. (85)

The temporal component of this equation results in the
solenoidal constraint, stating the absence of magnetic
monopoles,

∂i(
√
γBi) =

√
γ̂ D̂i(e6φ

√
γ̄/γ̂Bi) = 0. (86)

We now define

Bi ≡ e6φ
√
γ̄/γ̂Bi, (87)

so that (86) reduces to

D̂iBi = 0. (88)

For the spatial part of (85) we use (84) again to obtain
the induction equation in 3+1 form

∂tBj = D̂i
(
α(v̄jBi − v̄iBj)

)
. (89)

This form of the solenoidal constraint and continuity
equation is very similar to the one presented in [26, 105],
but solved there using a constraint transport approach,
while we evolve the vector potential of the magnetic field
in our framework instead.

3. Vector potential evolution equations

Numerically evolving the induction equation (89) di-
rectly is generally problematic, since accumulating nu-
merical error will typically result in the magnetic field
having nonvanishing divergence. The resulting growth of
spurious magnetic monopoles has severe consequences of
the evolution, since it will result in nonphysical fluid ac-
celeration in the direction of the magnetic field (see, e.g.,
[106]).

Various approaches have been implemented to avoid
this growth of magnetic monopoles in (GR)MHD sim-
ulations (see [107] for a comprehensive overview). The
three most commonly adopted approaches in GRMHD
codes are (i) hyperbolic divergence cleaning via a gener-
alized Lagrange multiplier [108]; (ii) constrained trans-
port (CT) [109] schemes in which the magnetic field is
updated in such a way that the divergence (measured in
a finite-difference stencil that is compatible with the base
CT scheme) remains unchanged to round off during the
evolution; and (iii) evolving not the magnetic field di-
rectly but rather its vector potential and taking the curl
of the vector potential in order to compute the magnetic
field [22, 25, 34]. As the divergence of the curl of a vector
field is identically zero, the latter approach guarantees
a solenoidal magnetic field to round off error during the
evolution.
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In developing the GRMHD evolution framework in
spherical coordinates, we opted to implement the latter,
namely evolving the vector potential in a cell-centered
fashion. We choose a vector-potential formulation for four
reasons: (1) the resulting equations can be easily incor-
porated into our reference-metric formalism; (2) contrary
to the hyperbolic divergence cleaning, the solenoidal con-
straint is automatically fulfilled to machine precision; (3)
there is no need to extend our internal parity bound-
ary conditions to deal with the staggered magnetic fields
used in CT schemes (though see the CoCoNuT [26, 105]
and Aenus [110] codes for implementations of staggered
CT schemes in spherical coordinates); and (4) it has re-
cently been shown to be strongly hyperbolic [111].

Imposing the ideal MHD limit again, and taking a pro-
jection of Eq. (49) with the spatial metric (2) shows that
the electric and magnetic field as observed by the normal
observer are related by

Eµ =
−1

W
εµνλκuνnλBκ. (90)

Defining the three-dimensional antisymmetric tensor as

εµνλ = nκεκµνλ, or εµνλ = nκε
κµνλ, (91)

so that εijk =
√
γ [ijk], we may rewrite (90) as

Ei = −εijkv̄jBk, (92)

where we have used εtij = −βkεikj (see Eq. (32) in [112]).
We now introduce a four-vector potential

Aµ = Φnµ +Aµ, (93)

where Φ is the electromagnetic scalar potential and Aµ
is purely spatial, Aµn

µ = 0, so that At = βiAi and At =
−αΦ + βiAi. Writing the Faraday tensor in terms of Aµ
yields

Fµν = ∂µAν − ∂νAµ = nµEν + nνEµ + εµνλB
λ. (94)

Contracting this with εµνλ yields

εµνλ(∂µAν − ∂νAµ) = εµνλεµνκB
κ = 2Bλ, (95)

or

Bi = εijk∂jAk. (96)

Inserting the definition (87) then results in

Bi = ε̂ijk∂jAk = ε̂ijkD̂jAk, (97)

where ε̂ijk =
√
γ̂ [ijk] and ε̂ijk = γ̂−1/2 [ijk].

Finally, we may evaluate a mixed time-space compo-
nent of (94) to find

∂tAi = −αEi + εtijB
j − D̂i(αΦ− βjAj). (98)

Inserting (92) and expressing the result in terms of Bi
results in

∂tAi = αε̂ijkv̄
jBk − D̂i

(
αΦ− βjAj

)
. (99)

In our code, we evolve the spatial components of the vec-
tor potential Ai, and compute, at each time step, the
conserved magnetic field from (97).

We evolve the vector potential in a “generalized Lorenz
gauge” [113]

∇µAµ = −ζΦ, (100)

where ζ is a damping parameter with dimensions of in-
verse length. As before, we use the identity (58) twice to
rewrite this as

∂t(e
6φ
√
γ̄/γ̂ Φ) + D̂i(αe6φ

√
γ̄/γ̂ Ai − e6φ

√
γ̄/γ̂βiΦ)

= −ζαe6φ
√
γ̄/γ̂Φ. (101)

We now define

Φ̂ ≡ e6φ
√
γ̄/γ̂Φ (102)

and

(fΦ)i ≡ αe6φ
√
γ̄/γ̂ Ai − βiΦ̂. (103)

and evolve (101) as

∂tΦ̂ + ∂i(fΦ)i = −ζαΦ̂− (fΦ)iΓ̂jij . (104)

In all applications shown in this paper we followed [29]
and chose ζ = 1.5/∆t,10 where ∆t is the global time step
of our numerical evolution.

We note that our algorithm is not staggered, i.e. the
vector potential Ai lives at the cell centers as do all other
variables. In order to update the magnetic field, we cal-
culate the curl of Ai (97), where we apply the product
rule and take derivatives of the scale factors analytically,
as with all other fields. Initial data for magnetic fields are
generated in the same way, namely by taking the curl of
a prescribed initial vector potential Ai.

4. Summary

In summary, the GRMHD evolution system in the
reference-metric formalism is composed of the following
conserved quantities:

D ≡ e6φ
√
γ̄/γ̂ρW, (105)

Sj ≡ e6φ
√
γ̄/γ̂(ρh∗W 2vj − αb0bj), (106)

τ ≡ e6φ
√
γ̄/γ̂(ρh∗W 2 − P ∗ − (αb0)2)−D, (107)

Bj ≡ e6φ
√
γ̄/γ̂Bj , (108)

10 Like the Γ-driving shift parameter η, ζ has units of 1/t (or equiva-
lently 1/M inG = c = 1 units). Thus the value of ζ is constrained
by the CourantFriedrichsLewy (CFL) condition (in precisely the
same way as described by [114] for η). However, unlike η, we
prefer the damping provided by ζ > 0 to be as strong as pos-
sible everywhere. Our choice ζ = 1.5/∆t is quite strong, but
should be stable for CFL factors of ≈ 2

3
or smaller, consistent

with the required CFL factors of 1
2

or smaller when solving the
BSSN/CCZ4 equations. As a corollary, when convergence testing
ζ = 1.5/∆t must correspond to the lowest-resolution simulation’s
∆t, to ensure the CFL condition is not violated.
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where we note that, unlike the corresponding conserved
variables of the Valencia formulation, these are true
scalars and vectors (tensor densities of weight zero). The
GRMHD evolution equations in coordinate basis are:

∂tD + ∂i(fD)i = −(fD)iΓ̂jij ,

∂tSj + ∂i(fS)ij = (sS)j − (fS)ijΓ̂
k
ik + (fS)ikΓ̂kij ,

∂tτ + ∂i(fτ )i = sτ − (fτ )iΓ̂jij ,

∂tAi = αε̂ijkv̄
jBk − D̂i

(
αΦ− βjAj

)
,

∂tΦ̂ + ∂i(fΦ)i = −ζαΦ̂− (fΦ)iΓ̂jij ,

Bi = ε̂ijk∂jAk.

Before proceeding with the description of the GRMHD
evolution equations expressed in the orthonormal basis
with respect to the spherical background metric, we note
that the geometric source terms introduced by rewrit-
ing the equations in the reference-metric formalism break
the roundoff level conservation of baryon number when
evolving D in a finite volume scheme. This is due to the
fact that the resulting finite volume scheme is not well-
balanced [115] unless the geometric source terms are eval-
uated in such a way as to numerically exactly cancel the
fluxes through the cell surface (see [33] for developments
towards well-balanced schemes in GRMHD; an extension
that is beyond the scope of this work). This nonconser-
vation is a drawback of the scheme. For the conserved
momenta Si and conserved energy τ this problem is less
severe, as those quantities are only strictly conserved in
the presence of spacetime symmetries [116], due to the
appearance of (spacetime)-geometric source terms. In a
sense, both problems are similar: both nonconservations
arise from rewriting covariant derivatives in terms of par-
tial derivatives which are suitable for the numerical inte-
gration of the resulting evolution equations.

When numerically evolving the Euler equation in
spherical coordinates, there is nonconservation of mo-
mentum in the θ coordinate, which is due to the presence
of the “naked pressure term” e6φ√γ̄P ∗δaj which causes
the breaking of zero-force equilibria. This is due to the
θ dependence of the spherical background metric intro-
duces a pressure gradient even in the absence of forces, as
the finite volume scheme is not well balanced. One key
advantage of our reference-metric approach is its auto-
matic conservation of θ-momentum due to the absence
of the reference-metric determinant. We note that there
are various other strategies to deal with this problem in
spherical coordinates, see e.g. [63, 117, 118]. The ϕ coor-
dinate is not affected by this, and angular momentum is
therefore identically conserved in spherical coordinates.

C. Equations in orthonormal basis of spherical
background metric

Before we continue to describe the implementation
of the evolution system in a finite volume method in

Sec. II D below, we first make the following choice for
the initial determinant of the conformally related metric,

γ̄ = γ̂ at t = 0. (109)

Moreover, we adopt the “Lagrangian choice” (9), ∂tγ̄ = 0,
meaning that we have γ̄ = γ̂ at all times (as noted in
Sec. II A, this is continuously enforced in the spacetime
evolution). Accordingly, the ratio γ̄/γ̂ is unity and our
definitions of the GRMHD variables therefore reduce to

D = e6φρW, (110)

Sj = e6φ(ρh∗W 2vj − αb0bj), (111)

τ = e6φ(ρh∗W 2 − P ∗ − (αb0)2)−D, (112)

Bj = e6φBj . (113)

Using the orthonormal basis with respect to the back-
ground metric defined above (13), we write the continuity
equation as

∂tD + ∂i

(
êi{j}(fD){j}

)
= −(fD)iΓ̂jij . (114)

Note that the vector (fD) is expressed in both bases in
Eq. (114). We evaluate the flux divergence by using the
product rule and analytically differentiating the scale fac-
tors,

∂i

(
êi{j}(fD){j}

)
=
(
∂iê

i
{j}

)
(fD){j} + êi{j}∂i(fD){j},

(115)
so that the continuity equation is given by

∂tD + êi{j}∂i(fD){j} = −(fD)iΓ̂jij −
(
∂iê

i
{j}

)
(fD){j}.

(116)
The momentum equation similarly becomes

∂t

(
ê
{i}
j S{i}

)
+ ê
{k}
j êi{l}∂i

(
(fS)

{l}
{k}

)
= −∂i

(
ê
{k}
j êi{l}

)
(fS)

{l}
{k} − (fS)ijΓ̂

k
ik + (fS)ikΓ̂kij + (sS)j .

(117)

Before we write out the rest of the GRMHD equations,
we note that the diagonality of the spherical background
metric allows us to simplify the notation in expressions
containing the basis elements. For instance, in expres-

sions such as ∂t

(
ê
{i}
j Ŝ{i}

)
, ê
{i}
j = 0 if i 6= j, which leads

to element-wise multiplication of vector and tensor com-
ponents in the orthonormal basis and the basis elements.

We could therefore write ê
{j}
j Ŝ{j} where the summation

convention does not apply on repeated coordinate (j) and
orthonormal ({i}) indices, but this can lead to signifi-
cant confusion when interpreting equations. Instead, we
introduce a new notation defining the following vectors
and matrices of rescale factors R̂{i} (corresponding to the
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scale factors hi of the reference-metric):

R̂{i} ≡

 1
r

r sin θ

 (118)

R̂{i} = 1/R̂{i}, (119)

R̂{i}{j} = R̂{i}R̂{j}, (120)

R̂{i}{j} = R̂{i}R̂{j}. (121)

As explained above, the components of the orthonormal
basis form a diagonal matrix, and the rescaling amounts
to element-wise multiplication of vector and tensor com-
ponents with the corresponding vectors and matrices of
rescaling factors (essentially computing the Hadamard
product). In order to write this in a notation that can
be used with the summation convention that we use
throughout, we define the following symbols that will be
used to express coordinate vectors and tensors in the or-
thonormal basis with respect to γ̂ij .

σi{j}{k} = σ
{j}{k}
i ≡

{
1 i = j = k

0 otherwise
(122)

Note that σi{j}{k} and σ
{j}{k}
i are not tensors and that

the indices in both are not raised and lowered by the
metric. In addition, indices of the two σ matrices can be
contracted with both coordinate and orthonormal indices
(i.e., indices surrounded by curly braces). As an example
of using this notation for vectors and tensors, the coor-
dinate three-velocity is written as

vi = êi{j}v
{j} = σi{j}{k}R̂

{j}v{k}, (123)

and the coordinate conformally related metric as

γ̄ij = ê
{k}
i ê

{l}
j

(
δ{k}{l} + h{k}{l}

)
= σ

{k}{m}
i σ

{l}{n}
j R̂{m}R̂{n}(δ{k}{l} + h{k}{l}).

(124)

In this notation, the continuity, momentum and energy
equations are written as

∂tD + σi{j}{k}R̂
{j}∂i(fD){k}

= −(fD)iΓ̂jij − σ
i
{j}{k}(∂iR̂

{j})(fD){k}, (125)

∂tS{j} + σi{k}{l}δ
n
j R̂{k}∂i

(
(fS)

{l}
{n}

)
=
[
− σi{k}{l}σ

{m}{n}
q (fS)

{k}
{m}

(
∂iR̂{l}{n}

)
− (fS)iqΓ̂

k
ik + (fS)ikΓ̂kiq + (sS)q

]
σq{j}{p}R̂

{p},

(126)

∂tτ + σi{j}{k}R̂
{j}∂i(fτ ){k}

= −(fτ )iΓ̂jij − σ
i
{j}{k}(∂iR̂

{j})(fτ ){k} + sτ .

(127)

Noting that
√
γ̂R̂{r}R̂{θ}R̂{ϕ} = 1, the evolution

equation for the vector potential takes a particularly sim-
ple form in our notation

∂tA{i} = −E{i}− σl{i}{k}R̂
{k}∂l(αΦ− β{j}A{j}). (128)

The evolution equation of the EM scalar potential is
given by

∂tΦ̂ + σi{j}{k}R̂
{j}∂i(fΦ){k}

= −ζαΦ̂− (fΦ)iΓ̂jij − σ
i
{j}{k}(∂iR̂

{j})(fΦ){k},

(129)

and finally, the conserved rescaled magnetic field is cal-
culated from

B{i} = σ
{i}{m}
l R̂{m}ε̂ljk∂jAk

= σ{i}{q}n R̂{q}ε̂njkσ
{l}{m}
k

(
A{m}∂jR̂{l}

+ R̂{l}∂jA{m}
)
. (130)

Introducing the following generalized sources

ΩD ≡ −(fD)iΓ̂jij − σ
i
{j}{k}(∂iR̂

{j})(fD){k}, (131)

(ΩS){j} ≡
[
− σi{k}{l}σ

{m}{n}
q (fS)

{k}
{m}

(
∂iR̂{l}{n}

)
− (fS)iqΓ̂

k
ik + (fS)ikΓ̂kiq + (sS)q

]
σq{j}{p}R̂

{p},

(132)

Ωτ ≡ −(fτ )iΓ̂jij − σ
i
{j}{k}(∂iR̂

{j})(fτ ){k} + sτ ,

(133)

(ΩA){i} ≡ −E{i} − σl{i}{k}R̂
{k}∂l(αΦ− βjAj), (134)

ΩΦ ≡ −ζαΦ̂− (fΦ)iΓ̂jij − σ
i
{j}{k}(∂iR̂

{j})(fΦ){k},

(135)

we can write the reference-metric GRMHD evolution sys-
tem in the following compact form suitable for the inte-
gration in a finite volume scheme:

∂tD + σi{j}{k}R̂
{j}∂i(fD){k} = ΩD,

∂tS{j} + σi{k}{l}δ
{n}
{j} R̂

{k}∂i

(
(fS)

{l}
{n}

)
= (ΩS)j ,

∂tS{j} + σi{k}{l}R̂
{k}∂i

(
(fS)

{l}
{j}

)
= (ΩS){j},

∂tτ + σi{j}{k}R̂
{j}∂i(fτ ){k} = Ωτ ,

∂tA{i} = (ΩA){i},

∂tΦ̂ + σi{j}{k}R̂
{j}∂i(fΦ){k} = ΩΦ,

B{i} = σ
{i}{m}
l R̂{m}ε̂ljk∂jAk.

We note that in Cartesian coordinates these equations
reduce to the equations of the Valencia formulation in
a vector potential evolution. In the following section, we
will turn to the finite volume implementation of the evo-
lution system above, and in particular how to deal with
the rescaling factors multiplying divergences of fluxes in
the orthonormal basis with respect to the spherical back-
ground metric.
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D. Evolution equations in integral form

Systems of nonlinear hyperbolic partial differential
equations (PDE) such as the GRMHD evolution sys-
tem presented above are characterized by the fact that
smooth initial data can develop discontinuities in the
variables in finite time. The reason the evolution system
is written in conservative form is that, in such a form,
a numerical scheme that converges guarantees the cor-
rect Rankine-Hugoniot conditions across discontinuities,
which is called the shock-capturing property. This prop-
erty is at the heart of high-resolution shock-capturing
(HRSC) methods that guarantee that the physics of the
flow will be correctly modeled by the numerical scheme
in the presence of discontinuities in the fluid variables.

Moreover, finite-difference schemes written in conser-
vation form guarantee that the convergence of the solu-
tion (if it exists) will be to one of the weak solutions of the
system of PDEs [119]. Weak solutions are characterized
by being solutions to the integral form of the conserva-
tion system. The set of all weak solutions is too large
to be of practical use, as many (numerically) admissible
weak solutions will not represent physically relevant so-
lutions. Thus there is need for an additional (thermody-
namic) condition, the so-called entropy condition (namely
that the entropy of a fluid element must increase when
crossing a discontinuity) to guarantee that the numer-
ical scheme will converge to the physical solution. The
convergence of the numerical scheme is closely related to
its stability, and one useful measure is the total-variation
(TV) stability (see e.g. [120] for a detailed discussion).

Additionally, numerical schemes written in conserva-
tion form guarantee that the conserved quantities of
the system are numerically conserved in the absence of
sources or sinks. This means that the change of the
state vector UA in time in a domain V that does not
contain sources or sinks will be given by the fluxes
F iA through the boundaries of the domain ∂V, a three-
dimensional surface which is defined as the standard-
oriented hyper-parallelepiped consisting of two space-
like surfaces {Σx0 ,Σx0+∆x0} and the timelike surfaces
{Σxi ,Σxi+∆xi} joining the two temporal slices together.

In a finite volume formulation, the evolution equations
are integrated over the cell volumes. For D, and similarly
the other fluid variables, this amounts to the following
integrals that give the update of a conserved quantity in
a given cell (see, e.g. [101, 121]):

∂t(〈D〉∆V ) +

∫
∆V

σi{j}{k}R̂
{j}∂i(fD){k}d3x = 〈ΩD〉∆V.

(136)
Here d3x = drdθdϕ, and we have defined

〈D〉 =
1

∆V

∫
∆V

Dd3x, (137)

〈ΩD〉 =
1

∆V

∫
∆V

ΩDd
3x, (138)

∆V = ∆r∆θ∆φ. (139)

Notice the absence of the spherical background metric
determinant

√
γ̂ in the above expressions, as all knowl-

edge about the spherical coordinates has been moved to
the background metric Christoffel symbols in the cell-
centered source term ΩD, together with our choice of
γ̄ = γ̂ 11. Up until now, the integration of the evolu-
tion equations over the cell volumes is exact. Approxi-
mating the value of D and the source ΩD inside the cell
volumes as piecewise constant, and being equal to their
cell-centered value (which is a second order accurate ap-
proximation), we obtain

∂t〈D〉+
1

∆V

∫
V

σi{j}{k}R̂
{j}∂i(fD){k}d3x = 〈ΩD〉.

(140)

The integral
∫
V
σi{j}{k}R̂

{j}∂i(fD){k}d3x is not a true

divergence due to the appearance of the rescaling vector
R̂{i}, and therefore we cannot use the divergence theorem
to convert the volume integral into a surface integral over
the cell surface to arrive at finite volume scheme. We
therefore make a third-order approximation, setting R̂{i}
to be piecewise constant and equal to its value at the
cell-center, denoted as 〈R{l}〉ijk (where the subscript ijk
denotes a cell), so that the volume integral can then be
converted to a surface integral of the fluxes through the
cell faces,

σl{m}{n}
〈R{m}〉ijk

∆V

∫
V

∂l(fD){n}d3x

= σl{m}{n}
〈R{m}〉ijk

∆V

∫
S

f
{n}
D sldA,

where si is the outward pointing unit-normal to the cell
surface, and dA the surface element. Therefore, all vol-
ume integrals in a finite volume scheme in the reference-
metric formalism will be “Cartesian” in the sense that
we integrate over “Cartesian” volumes and surfaces in
the spherical grid using fluxes in the orthonormal basis
with respect to γ̂ij . In our second-order accurate approx-
imation, the surface integrals are given by

〈R{r}〉ijk
∆V

∫
S

f
{r}
D srdA =

〈R{r}〉ijk
∆r

Ξr, (141)

〈R{θ}〉ijk
∆V

∫
S

f
{θ}
D sθdA =

〈R{θ}〉ijk
∆θ

Ξθ, (142)

〈R{ϕ}〉ijk
∆V

∫
S

f
{ϕ}
D sϕdA =

〈R{ϕ}〉ijk
∆ϕ

Ξϕ, (143)

11 A different strategy could have been followed here, namely the
integration of Eq. (66) in spherical coordinates directly using
the generalized Stokes theorem. This approach is followed in the
CoCoNuT code, see [102, 105] for details.
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where the symbols Ξi are defined as

Ξr ≡
(

(fD)
{r}
i+ 1

2 ,j,k
− (fD)

{r}
i− 1

2 ,j,k

)
, (144)

Ξθ ≡
(

(fD)
{θ}
i,j+ 1

2 ,k
− (fD)

{θ}
i,j− 1

2 ,k

)
, (145)

Ξϕ ≡
(

(fD)
{ϕ}
i,j,k+ 1

2

− (fD)
{ϕ}
i,j,k− 1

2

)
. (146)

We can then write the second-order accurate finite vol-
ume evolution equation for D as

∂t〈D〉+
〈R{r}〉ijk

∆r
Ξr+

〈R{θ}〉ijk
∆θ

Ξθ+
〈R{ϕ}〉ijk

∆ϕ
Ξϕ = 〈ΩD〉,

(147)
and similar for the Euler and energy equation. The evo-
lution equations for the vector potential (128) and the
EM scalar potential (129) are treated differently: the cell-
centered electric field is calculated averaging the recon-
structed velocity and magnetic field at the surrounding
cell faces (see Eq. (148) below), and the divergence in the
EM scalar potential evolution equation is evaluated using
finite-differences. This means that the time integration of
the conserved variables is given by the interface fluxes of
matter and energy-momentum of the fluid, as well as the
(cell-centered) sources. One can therefore approximate
those numerical fluxes (which depend on the solution at
the cell interfaces) as the time-averaged fluxes across cell
interfaces during a time step. In general, the approxima-
tion to the real solution on a grid with finite resolution
will be a piecewise continuous function, which means that
the fluxes can be obtained by solving local Riemann prob-
lems at cell interfaces, an idea first described by Godunov
[122].

Riemann problems are initial value problems (IVPs)
with discontinuities in the solution. During the evolu-
tion, a discontinuity in the fluid variables decays into
shock waves, rarefaction waves and contact discontinu-
ities. Shock waves move from the higher to lower density
regions, while rarefaction waves move in the opposite di-
rection. Contact discontinuities are characterized by a
discontinuity in the density, while both pressure and ve-
locity are constant across them. In order to solve the Rie-
mann problem, we need to obtain the spectrum (eigen-
values and eigenvectors) of the first-order system. The
fluid data at the cell interfaces needed to obtain the nu-
merical fluxes via the solution of local Riemann problems
needs to be obtained from the cell averages. A wide vari-
ety of higher order cell-reconstruction methods are avail-
able in the literature (see e.g. [123]). Regardless of their
spatial order for smooth solutions, these reconstruction
techniques always reduce to first-order in the presence
of physical shocks and some reconstruction schemes even
reduce to first order at local extrema of the fluid variables
(such as the central density of a NS, for instance).

While the choice of variables is crucial to obtain the
GRMHD evolution equations in conservative form, it is
usually the primitive variables that are reconstructed at
the cell interfaces. To do this, one needs a conservative-to-
primitive scheme, involving numerical root finding. Once

we have obtained the numerical fluxes via the solution of
local Riemann problems, we update the solution of the
conserved variables by one time step with the numerical
fluxes and the sources. This is usually done employing
high-order Runge-Kutta schemes [124].

From the structure of the equations in integral form, as
noted above, we see that they are “Cartesian” by virtue
of having written the conservation laws in the reference-
metric formalism. The second-order accuracy is achieved
by encoding all the geometric information about the un-
derlying coordinate system in the cell-centered geometric
source terms. Specifically, no care has to be taken to dis-
tinguish the coordinate center and centroid of volume
of the computational cells. In general curvilinear coordi-
nates, this is not the case, as replacing the average value
of a cell quantity with a point value is only second-order
accurate if the point is chosen to be the centroid of vol-
ume, not the coordinate center [125, 126]. To this end,
the second-order accurate prescription outlined could be
applied to any existing Cartesian finite volume code by
calculating the appropriate reference-metric source terms
and incorporating them in the time integration of the
evolution equations.

In the following section, we describe the necessary
changes we performed to enable the use of spherical co-
ordinates via the GRMHD reference-metric formalism
presented above in GRHydro [28, 127–129], a publicly
available GRMHD code that comes with the Einstein
Toolkit.

III. IMPLEMENTATION IN THE EINSTEIN
TOOLKIT

The Einstein Toolkit [82] is an open source code
suite for relativistic astrophysics simulations. It uses the
modular Cactus framework [130] (consisting of general
modules called “thorns”) and provides adaptive mesh re-
finement (AMR) via the Carpet driver [131–133]. In our
vacuum implementation of the BSSN equations [81] we
have detailed how we enabled the use of spherical coor-
dinates in the Einstein Toolkit, having supplied our
own spacetime evolution thorn.

Enabling spherical coordinates in GRHydro to arrive at
a GRMHD code in spherical coordinates in the Einstein
Toolkit amounted to supplying a different metric de-
terminant and the appropriate reference-metric source
terms, so the changes to the existing code are minimally
invasive and do not touch core algorithms of GRHydro.
Perhaps the most substantial change involved using the
NRPy+ code [134, 135] to replace the Cartesian GRMHD
source terms in GRHydro with the generalized source
terms (131)–(135). NRPy+ converts these expressions—
written in human-readable, Einstein notation—into op-
timized C-code kernels, automatically constructing finite-
difference derivatives at arbitrary order when needed.
NRPy+ was also used to fully construct the C-code ker-
nels for Einstein’s equations written in both BSSN (as
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described in [81]) and fCCZ4 formalisms.

At the interface between the spacetime and GRMHD
evolution, the (physical) spacetime variables α, βi, γij ,
and Kij of the ADMBase thorn are passed to GRHydro.
As outlined above, rewriting the equations to evolve the
non-coordinate components of vectors, and dividing ev-
ery
√
γ by

√
γ̂ would amount to a great deal of rescal-

ing and un-rescaling (both vector components and de-
terminants) in GRHydro. Instead, we follow a different
route and pass the non-coordinate basis metric γ{i}{j} =

e4φ(δ{i}{j} + h{i}{j}) and shift β{i} as the ADMBase vari-
ables in substeps of the method of lines integration. This
means that

√
det γ{i}{j} = e6φ and raising and lower-

ing indices of non-coordinate vectors is achieved with the
non-coordinate basis metric v{i} = γ{i}{j}v

{j}.

As outlined above, given that the evolution equa-
tions in integral form are “Cartesian”, the different
reconstruction methods that are available in GRHydro
may be used without modification. These include: to-
tal variation diminishing (TVD) with minmod; super-
bee [136] and monotonized central [137] limiters; the
piecewise parabolic method (PPM) [138] and its en-
hanced version that retains higher order at smooth
extrema [139, 140]; monotonicity-preserving fifth order
(MP5) reconstruction [141]; essentially non-oscillatory
reconstruction (ENO) [142]; as well as weighted essen-
tially non-oscillatory reconstruction (WENO [143] and
its variant WENO-Z [144]). Using these reconstruction
algorithms without modification would have been im-
possible had the code been written in spherical coordi-
nates without the reference-metric formalism, as greater
care must be taken when using these in spherical coordi-
nates, especially for higher order reconstruction methods
(see e.g. [126]). We use the HLLE (Harten-Lax-van Leer-
Einfeldt) approximate Riemann solver [145, 146] present
in GRHydro, again without any changes to its implemen-
tation to calculate the numerical fluxes through cell faces.

In order to achieve magnetic flux conservation, the cell-
centered electric field E{i} used in the update of the vec-
tor potential is calculated as the average of the nonzero
magnetic fluxes given by the HLLE solver [107],

(E{1})i,j,k =− 1

4

(
αv{2}B{3} − αv{3}B{2}

)
i,j− 1

2 ,k

− 1

4

(
αv{2}B{3} − αv{3}B{2}

)
i,j+ 1

2 ,k

+
1

4

(
αv{3}B{2} − αv{2}B{3}

)
i,j,k− 1

2

+
1

4

(
αv{3}B{2} − αv{2}B{3}

)
i,j,k+ 1

2

,

and similarly for E{2} and E{3}. As shown in [147, 148],
the cell-centered vector potential method we employ
is identical to evolving the induction equation directly
with the so-called flux-CD scheme [107], as the mag-
netic field is cell-centered and the curl of the gradient
D̂i
(
αΦ− βjAj

)
in the RHS of Ai is zero.

To mitigate high-frequency oscillations in the cell-
centered vector potential evolution, we add Kreiss-Oliger
dissipation [149] to the RHSs of both Ai and Φ̂ [147, 150].

One of the most delicate parts of GRMHD codes is
the recovery of the primitive variables, which usually re-
quires nonlinear inversion. GRHydro uses the conservative
to primitive routines scheme of [40]. Some of the most
problematic regimes for the inversion are in regions of
very high Lorentz factors and in magnetically dominated
plasmas, i.e. where b2/(2P ) � 1. In those regions, the
inversion errors may become comparable to the trunca-
tion error and result in larger errors causing the evolution
to fail eventually. The biggest problem is the violation of
physical constraints such as the positivity of ρ and P dur-
ing the recovery, as in this case the hyperbolicity of the
evolution equations breaks down [151]. As is customary
in GRMHD codes, we use a tenuous atmosphere, given
that the GRMHD evolution equations break down in true
vacuum. The atmosphere region is particularly difficult
to handle, as even very small magnetic fields can result
in very large ratios of magnetic to fluid pressure. We use
the following checks prior to primitive recovery:

1. In cells where D < e6φρatm, reset the cell to at-
mosphere assuming a zero magnetic field (ignoring
the contribution of the magnetic field to τ) and skip
the primitive recovery. The magnetic field is fully
evolved in the atmosphere and always calculated
from the curl of the vector potential.

2. Following [26], when a BH is present, in regions
where b2/(2P ) is greater than a user-specified
threshold, we raise the above criterion to reset
to atmosphere, which avoids primitive inversion in
cells that are just above the atmosphere threshold.
Effectively, this results in a higher-density atmo-
sphere, but in regions limited to high magnetic to
fluid pressure ratios, while allowing the use of a low-
density atmosphere in regions of small magnetic
fields. This is important as a denser atmosphere
can begin to affect the evolved physical system of
interest [152].

3. Following [29] we check, after primitive recovery,
whether ρ, P and W exceed user-specified limits,
and, if so, reset the primitives and then recalculate
the conservatives.

4. Once an apparent horizon (AH) is found, we reset
a small region deep inside the AH to atmosphere.
In all the above steps, the magnetic field is never
altered in any computational cell and always com-
puted from the vector potential.

In future versions of the code, problems related to the
primitive recovery could be handled by more modern al-
gorithms, such as evolving the entropy S and using it
to recover the pressure [42], or using different primitive
recovery schemes, see [153] for an overview. Another at-
tractive approach could be the use of physical-constraint-
preserving methods [151, 154, 155].
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A well-known problem of evolving hyperbolic PDEs in
spherical coordinates is the severe CFL limitation due
to the nonconstant cell volumes in space, which become
smaller (therefore leading to smaller time steps) as the
origin and axis are approached. There are several ap-
proaches to mitigate this problem (for an introduction,
see e.g. [156]), from various multipatch approaches which
remove the polar axis [140, 157–167], mesh coarsening in
the azimuthal direction at high latitudes [168], radially
dependent mesh coarsening in both polar and azimuthal
angles [169], mesh coarsening as a conservative filter op-
eration [170–173], focusing resolution of the polar angle
at the equator [174, 175], or the use of filters [176–178].

In order to avoid excessively small time steps in full 3D
simulations, we employ a radial and latitude dependent
azimuthal fast Fourier transform (FFT) filter (using the
FFTW3 library [179]) that will be described in detail in
a companion publication [180]. In short, we expand all
evolved fields in the azimuthal direction in a Fourier se-
ries and retain m-modes such that the time step at the
pole is limited by nϕ = 6 points. Higher-order m-modes
in the expansion are exponentially damped, which is suf-
ficient to prevent instability by violating the CFL condi-
tion.

We use the boundary condition thorn described in [81].
In summary, internal boundary ghost zones for the r
boundary at the origin, and the θ and ϕ boundaries are
copied in from points in the physical domain, accounting
for appropriate parity factors, which we list for rescaled
and unrescaled vector and tensor components in table I
for completeness. The ghost zone to physical point map-
pings are as follows:

• r-boundary at the origin:

r → −r
θ → π − θ,
ϕ→ ϕ+ π,

• θ-boundary at θmin = 0:

r → r

θ → −θ,
ϕ→ ϕ+ π,

• θ-boundary at θmax = π:12

r → r

θ → 2π − θ,
ϕ→ ϕ+ π.

12 We note there is a typo in the θ mapping of the θmax = π
boundary in [81], the correct mapping is the one shown here.

TABLE I. Parity factors for rescaled and coordinate vector
and tensor components at the origin and polar axis. The par-
ity factors for contravariant components are the same as for
the covariant components shown.

Origin Axis

V{r} – +
V{θ} + –
V{ϕ} – –

Vr – +
Vθ – –
Vϕ + +

T{r}{r} + +
T{r}{θ} – –
T{r}{ϕ} + –
T{θ}{θ} + +
T{θ}{ϕ} – +
T{ϕ}{ϕ} + +

Trr + +
Trθ + –
Trϕ – +
Tθθ + +
Tθϕ – –
Tϕϕ + +

Finally, ghost zones for ϕ are set by imposing periodicity.
We note that our boundary condition requires an even
number of grid points in the ϕ direction in order to ensure
that ghost zones lie at the exact locations of points in the
physical domain.

IV. CODE TESTS

In the following we show results for a series of code
tests, ranging from special relativistic test problems in a
fixed background Minkowski spacetime to fully dynami-
cal spacetime evolutions of magnetized stable uniformly
rotating neutron stars and the collapse of a magnetized
uniformly rotating neutron star to a Kerr BH [181].

A. Tests in Minkowski spacetime

The first set of tests is performed in a fixed background
Minkowski spacetime ({h{i}{j} = Ā{i}{j} = 0,K = Θ =

0, β{i} = B{i} = Λ̃{i} = 0, α = e4φ = 1}), allowing us
to compare the performance of the MHD evolution with
standard Newtonian tests. This enables us to validate
our implementation of the GRMHD evolution equations
with all metric terms set to flat space. To demonstrate
the code is working correctly in this setting, we show two
tests below. First, we solve a strong shock reflection prob-
lem without magnetic fields (evolving pure HD problems
by simply setting the vector potential to zero everywhere
initially). The second, more demanding test is an explo-
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sion test problem. As shown below, these tests are do
not exploit symmetries of the spherical coordinate sys-
tem, demonstrating that the framework can, e.g., handle
the passage of strong shocks through the origin and polar
axis.

1. Relativistic spherical shock reflection test

Our first test is the relativistic spherical shock reflec-
tion problem [182–186]. The test consists of an initially
cold (ε ≈ 0) fluid of unit density (ρ = 1) flowing in uni-
formly with a velocity of vr = vin = −0.9 towards the ori-
gin, where the fluid is compressed and heated up result-
ing in a shock that travels upstream through the inflow
region. For numerical reasons, the problem is initialized
with a small pressure of p = 2.29 × 10−5(Γ − 1), where
we use Γ = 4/3. The analytic solution to this problem is
given by [182]:

ρ(r) =

{
(1 + |vin|t/r)2

r > vst

(1 + |vin|/vs)2
σ r < vst

(148)

where the compression factor σ and the shock velocity vs
are given by

σ =
Γ + 1

Γ− 1
+

Γ

Γ− 1
(Win − 1) (149)

and

vs =
Γ− 1

Win + 1
Win|vin|, (150)

and where Win is the Lorentz factor of the inflowing fluid
at the outer boundary (≈ 2.29 for vin = −0.9).

Behind the shock wave (r < vst), the fluid is at rest
(vr = 0), and internal energy is given by ε = Win − 1.

For this test, we used 800 radial points in the interval
[0:1], and 2 points in the θ and ϕ directions, using the
HLLE Riemann solver, TVD reconstruction with a Min-
mod limiter and CFL factor of 0.4. At the outer radial
boundary, ρ is set to the analytic solution (148), and vr

and p are kept fixed at their initial values. Figure 1 shows
the radial profiles of ρ, P and vr of the numerical and
analytic solution at t = 4.

The global relative error at t = 4 is 2.2%, 2.1% and
1.2%, for ρ, P and vr, respectively. In the density profile,
a significant drop near the origin is present. This numer-
ical effect is known as wall heating [187], and seems to
be exacerbated in spherical coordinates due to the con-
verging grid geometry [188].

We also note that we observed significant postshock
oscillations behind the slowly moving shock when using
higher order reconstruction methods. This appears to be
a known problem for HRSC schemes (see e.g. [189] and
references therein).
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FIG. 1. Radial density, pressure, and velocity profiles (from
top to bottom) of the relativistic spherical shock reflection
problem at time t = 4. The red circles correspond to the
numerical solution, while the analytic solution is shown as
solid black lines.

2. Spherical explosion

Next, we test the relativistic MHD evolution with a
magnetized spherical explosion problem [26]. This test is
the natural extension of the cylindrical explosion test pro-
posed in [190] to spherical coordinates, setting up spher-
ically symmetric initial data. Using the same jump con-
ditions as [190], the initial data consists of an overdense
(ρ = 1× 10−2, p = 1.0) ball of radius 1.0. From a radius
of 0.8 onwards, the solution is matched in an exponen-
tial decay to the surrounding medium (ρ = 1 × 10−4,
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FIG. 2. Snapshots of magnetized spherical explosions in axisymmetry. Top left: Initial pressure profile. Top right: Pressure at
t = 4, HLLE Riemann solver and MP5 reconstruction. Bottom left: Lorentz factor at t = 4, HLLE Riemann solver and MP5
reconstruction. Bottom right: Pressure at t = 4, global Lax-Friedrichs fluxes and TVD reconstruction, initial Bz = 1.0.

p = 3 × 10−5). The initial pressure profile in the y = 0
plane is shown in the top left panel of Fig. 2. We are using
a Γ−law equation of state (EOS) using Γ = 4/3. In the
magnetized case the entire domain is initially threaded
by a constant magnitude magnetic field parallel to the z-
axis (Bz = 0.1), and the fluid velocity is set to zero every-
where in the domain initially. As in the relativistic shock
reflection problem, we use fixed background Minkowski
spacetime for this test problem.

We first model a magnetized spherical explosion in ax-
isymmetry, using (nr = 160, nθ = 80, nϕ = 4) points,
with the outer boundary rmax = 6.0. We use the HLLE
Riemann solver and different reconstruction methods for
this test. The final distributions at t = 4 for the pressure
P and Lorentz factor W in the y = 0 plane are shown in
the top right and bottom panels of Fig. 2.

In the initially overdense explosion region, the fluid

is only weakly magnetized, while being strongly magne-
tized in the ambient medium. This results in a rich flow
morphology in which the fast magnetosonic wave travels
out ahead in spherical symmetry at almost the speed of
light, while the Alfvén wave shows a cos θ dependence in
propagation speed, traveling close to the speed of light
parallel to the initial magnetic field, while being signifi-
cantly slowed down in the direction perpendicular to the
magnetic field, shown in the top right panel of Fig. 2 (see
the discussion in [26]).

During the explosion, the magnetic field is expelled
from the initial explosion region, leaving a spherically
symmetric low-density region behind in which the fluid
is at rest, as evidenced by the plot of the Lorentz factor
in the bottom left panel of Fig. 2. The results seem to be
in very good qualitative agreement with the results pre-
sented in [26] (spherical coordinates and axisymmetry)
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FIG. 3. Snapshots of off-centered spherical explosions. Top left: Initial pressure profile. Top right: Pressure at t = 4, HLLE
Riemann solver and TVD reconstruction, Bi = 0. Bottom left: Pressure at t = 4, HLLE Riemann solver and MP5 reconstruction,
Bi = 0. Bottom right: Pressure at t = 4, global Lax-Friedrichs fluxes and TVD reconstruction with initial magnetic field
Bz = 0.1 rotated by 45◦ about the x-axis.

and [34] (Cartesian coordinates).

As a final axisymmetric test we perform the same ex-
plosion, but with an initial magnetic field of much larger
strength Bz = 1.0. This is a very demanding test for
which we have used global Lax-Friedrichs fluxes and TVD
reconstruction with the Minmod limiter as they are more
diffusive. In the bottom right panel of Fig. 2, we plot
the pressure distribution at t = 4 in the y = 0 plane
for this test. The morphology of the explosion changes
completely and becomes bar-shaped, as seen in Carte-
sian simulations of magnetized cylindrical and spherical
explosions (see e.g. [34, 191]). Compared to the more
weakly magnetized explosion, more noise can be seen in
the ambient region. As discussed in [191], this test is
most strenuous on the conservative to primitive solver,
so we believe that the noise is due to inversion failures.

Next, we test the code by modeling an off-center spher-
ical explosion, both in relativistic HD and relativistic

MHD. As this test does not exploit the symmetries of
our spherical coordinate system, we perform it in full
3D. The initial data are identical to the axisymmetric
test described above, except the center of the explosion
region has been moved to (x = 1.1, y = 0, z = 0). The
resulting initial pressure profile in the y = 0 plane is
shown in the top left panel of Fig 3. In addition, com-
pared to the axisymmetric explosion, the initial magnetic
field Bz = 0.1 has been tilted by 45◦ about the x-axis.
This results in initial data that do not reflect the sym-
metries of the spherical coordinate system at all. For this
full 3D test, we use (nr = 160, nθ = 80, nϕ = 160) points,
and use the azimuthal FFT filter to increase the time step
to what it would have been, had the simulation been per-
formed with nϕ = 6 points.

We first perform two tests setting the magnetic field to
zero initially, using TVD and MP5 reconstructions. The
results for the two different reconstruction schemes are
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FIG. 4. Pressure distribution in spherical off-centered explo-
sion with a magnetic field initially tilted by 45◦ about the
x-axis. The plane shown is the y-z plane centered at the ini-
tial center of the explosion region (x = 1.1, y = 0, z = 0).
Simulation performed with global Lax-Friedrichs fluxes and
TVD reconstruction with Minmod limiter.

shown in the top right and bottom left panels of Fig. 3,
respectively. When using TVD, there are no visible ar-
tifacts arising from the (in hydro only) spherically sym-
metric shock passing through the origin and axis. The
rarefaction region is seen to be spherically symmetric as
well, showing no artifacts. When using MP5, the shock
width is clearly reduced compared to TVD reconstruc-
tion, demonstrating a superior capture of the shock with
the higher order reconstruction, but small artifacts in
those parts of the shock that have passed the origin and
polar axis can be seen. A similar test in hydro is pre-
sented in [169]. The bottom right panel of Fig 3 shows
the final pressure distribution for the off-centered, tilted
magnetic field spherical explosion, which was performed
using global Lax-Friedrichs fluxes and TVD reconstruc-
tion with a Minmod limiter. This test displays more pro-
nounced effects of the magnetized shock passing through
origin and polar axis, showing primitive recovery failures
at the polar axis. The global morphology is captured well
nevertheless.

It is worth noting that the numerical artifacts that can
be seen in the bottom panels of Fig 3 are not concerning
at all. The test setup was deliberately chosen to push the
code to its limits by not exhibiting any (approximate)
symmetries the framework was designed for, and is a dif-
ficult test to pass even for Cartesian codes [34].

Finally, in Fig. 4 we plot the final pressure distribution
in the x = 1.1 plane, i.e. the plane vertically cutting
through the initial center of the explosion region. The
flow morphology observed in the axisymmetric case (top
right panel of Fig. 2) is clearly seen to be present and
tilted by 45◦, which is precisely the symmetry axis picked
out by the tilted magnetic field initially threading the
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FIG. 5. Convergence order in conservation of D and τ for the
spherical off-centered explosion with a magnetic field initially
tilted by 45◦ about the x-axis. See main text for details.

computational domain.
As explained in Sec. II B 4 above, the conserved rest

mass densityD is not conserved to round off in our frame-
work due to the appearance of geometric source terms in
the evolution equation for D (67). Furthermore, the FFT
filter we employ to circumvent the severe CFL limit in
full 3D simulations is inherently non-conservative as well.
We therefore check for the convergence of the total rest
mass and total energy conservation (sτ , the source term
in the evolution equation for τ (76) vanishes in Minkowski
spacetime so that τ should be exactly conserved as well).
To do so, we calculate εA(t), the volume integrated error
arising from nonconservation of a quantity A = (D, τ) at
time t as:

εA(t) =

∫
Σ

(A(t)−A(0))
√
γ̂ drdθdϕ, (151)

and calculate the convergence order qA(t) as [192]:

qA(t) =
1

ln(f)
ln

(
||εA(t)||low

||εA(t)||high

)
, (152)

where f is the ratio between the different resolutions
used in the convergence test. We calculate qA(t) in
the most demanding variant of the spherical explosion,
the off-centered explosion with a tilted initial magnetic
field, using two different resolutions of (nr, nθ, nϕ) =

(112, 56, 112) and (160,80,160), corresponding to f ≈
√

2
and show the time evolution of qA(t) in Fig. 5. In our
numerical scheme, we would expect the convergence or-
der to be between 1 and 2, as our method is 2nd order
accurate while reducing to first order in the presence of
shocks. The convergence order of the conservation of to-
tal rest mass lies within that region, while for the total
energy it drops below first order at the time the numerical
artifacts at the polar axis seen in the bottom right panel
of Fig. 3 start appearing. The maximum relative error in
the conservation of total rest mass and total energy in
the high resolution test is 0.0016 and 0.004, respectively.
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FIG. 6. ρ and b2 evolution of tilted model BU2, shown at t = 0 (left) and t = 25 ms (right).

B. Dynamical spacetime tests

Next, we turn to dynamical spacetime evolutions of
uniformly rotating neutron stars, testing the coupled
spacetime and GRMHD evolution of the SphericalNR
framework. To test the framework in this regime,
we evolve two uniformly rotating polytropes, models
BU2 [193] and D1 [127], adding a weak poloidal mag-
netic field initially. We perform tests of two important
scenarios: The long-term evolution of a stable equilib-
rium model, as well as the gravitational collapse of a
uniformly rotating polytrope to a BH. In the long-term
evolution of model BU2, we initially tilt the star’s rota-
tion axis by 90◦ in order to test the evolution in full 3D
without symmetry assumptions. In this test, the fluid ro-
tates through the polar axis during the entire simulation,
dragging the magnetic field with it through the polar axis
constantly. In the second test, we perform a simulation
of the gravitational collapse of model D1, testing all as-
pects of our framework: the correct coupled evolution of
the fCCZ4 and GRMHD equations leading to dynamical
BH formation and ringdown to a Kerr BH.

1. Tilted, magnetized, uniformly rotating neutron star

The initial data are generated with the RNS code [194],
which has been incorporated as a thorn named
Hydro RNSID in the Einstein Toolkit. As with all orig-
inal Cartesian thorns present in the Einstein Toolkit,
in order to interface with SphericalNR we need to co-
ordinate transform the Cartesian initial data generated
by the Hydro RNSID code and then rescale the evolved
fields. In order to test the FFT filter applied to both
spacetime and GRMHD fields and nontrivial dynamics in
full 3D, we initially tilt the rotation axis of the neutron
star by 90◦ about the x-axis so that the star’s rotation
axis is initially aligned with the y-axis. After generating
the tilted fluid and spacetime data, we add a small ini-

TABLE II. Main properties of the relativistic polytrope mod-
els BU2 [193] and D1 [127]: central rest mass density ρc, rest-
and gravitational masses M0 and M , the dimensionless an-
gular momentum J/M2, the circumferential stellar radius R,
the ratio of polar and equatorial radii of the star rp/re, the ra-
tio of kinetic energy and gravitational binding energy T/|W |,
the adiabatic index Γ, the polytropic constant K, and the con-
stants prescribing the initial magnetic field Ab, ns and Pcut

(see main text for details).

BU2 D1

ρc 1.28× 10−3 3.28× 10−3

M0 1.58 1.83
M 1.47 1.67

J/M2 3.19× 10−1 2.07× 10−1

R 10.11 7.74
rp/re 0.9 0.95
T/|W | 2.44× 10−2 1.17× 10−2

Γ 2 2
K 100 100
Ab 2 1
ns 0 0
Pcut 6.55× 10−6 4.25× 10−6

tial magnetic field, following the vector-potential-based
prescription of [19]:

Ar = 0, (153)

Aθ = 0, (154)

Aϕ = Ab(r sin θ)2(1− ρ

ρc
)nsmax(Pcut − P, 0), (155)

Φ = 0, (156)

where values of Ab, ρc, ns and Pcut are provided in Table
II. With this setup, the tilted, uniformly rotating star
will constantly drag the magnetic field through the po-
lar axis during the evolution. While the initial data are
polytropic, we evolve the star with a Γ-law EOS. We
use a third order strong stability-preserving Runge-Kutta
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(SSPRK3) method [124, 195]13, implemented in the MoL
thorn [129], the HLLE Riemann solver and WENO-Z re-
construction for the simulations presented here. We have
also tried ePPM and MP5 reconstruction, but found a
large symmetry breaking at late times when using those.
To check for convergence of our code, we evolve three
different resolutions for 29 ms, which is more than 200
dynamical timescales of the star.

The t = 0 and t = 25 ms distributions of ρ and b2 in the
y = 0 plane are shown in Fig. 6. The star remains very
stable and very contained, and there are no large outflows
from the stellar surface into the atmosphere, demonstrat-
ing the code’s capability to deal with the stellar surface.
This is a difficult test, as the numerical dissipation at the
stellar surface is minimal in spherical coordinates, due
to the fact that the surface and computational cell sur-
faces are mostly aligned (in Cartesian coordinates, this
effect is seen along the coordinate axes, see e.g. Fig. 3
in [197]). During the evolution, the quantity b2 develops
a richer morphology than it has in the beginning, which
we believe results from the fact that the initial poloidal
field evolves into having poloidal and toroidal compo-
nents (while the initial data are uniformly rotating, the
misalignment between the star’s rotation axis and the ini-
tial magnetic field dipole axis results in the generation of
a toroidal magnetic field.). In order to quantify the error
arising from the FFT filter and to check for the resolu-
tion dependence in the radial and angular coordinates,
we plot the following diagnostics in Fig. 7: the relative
error in central density and total rest mass in the top
two panels, as well as the evolution of the L2-norm of
the Hamiltonian constraint in the bottom panel.

Additionally, in Fig. 8 we show a convergence study
with three different resolutions, now increasing the reso-
lution twice by a factor of f = 1.5 in all three coordinate
directions. The top panel shows the evolution of the er-
ror in the central density evolution, where the medium
and higher resolution errors have been multiplied by 1.8
and 3.375, respectively, assuming a convergence order of
1.5. Our code is formally second order, while reducing to
first order in the presence of shocks. The surface of the
neutron star is a discontinuity, so we would expect the
order of convergence to be between 1 and 2. The bottom
panel shows the convergence factor for the total rest mass
M0 (158), the ADM mass evaluated as a volume integral,
and the L1-norm of the Hamiltonian. As in Sec. IV A 2,
we calculate the convergence order for M0 and MADM

using (152), while the convergence order of the L1-norm
of the Hamiltonian is calculated as [192]:

qA(t) =
1

ln(f)
ln

(
||H(t)||low − ||H(t)||med

||H(t)||med − ||H(t)||high

)
. (157)

As the initial magnetic field is small, and the tilted
rotation axis of the star should not affect its dynamics

13 Strong stability-preserving time discretization methods have
been called TVD methods historically [196].
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straint (bottom panel) for magnetized model BU2. Three dif-
ferent resolutions are shown in each plot.

during evolution, we calculate the frequencies of oscil-
lations in ρmax(t) as a power spectral density for the
two higher resolution runs in Fig. 9. We overlay the ex-
pected frequencies of the fundamental quasiradial (F )
and quadrupolar 2f modes and their first overtones (H1

and 2p1) (taken from Table 5 of [198]). In both resolu-
tions, the fundamental modes F and 2f are in very good
agreement with [198], however the first overtones (H1 and
2p1) of both fundamental modes is not visible in the sim-
ulation with lower radial but higher angular resolution,
while being slightly shifted in the higher radial resolution
simulation.
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These tests show that our code is capable of evolv-
ing equilibrium neutron stars with magnetic fields for
many timescales, in a setup (constant fluid motion and
magnetic field dragging through the polar axis) that was
chosen to be particularly challenging for our framework.

2. Collapse of a magnetized uniformly rotating neutron star

As our last test, we present a very important test
problem for numerical relativity simulations with mat-
ter: the collapse of a neutron star to a black hole (see,
e.g. [127, 140, 199–202]). Using the Hydro RNSID code
thorn in the Einstein Toolkit again, we setup the uni-
formly rotating polytrope model D1 [127] with a weak
poloidal magnetic field added initially and evolve its col-
lapse to a Kerr BH. The initial data specifications of
this model are listed in Table II. The simulation is per-
formed in axisymmetry, and the collapse is induced by
lowering the polytropic constant K everywhere in the
star by 2% initially. The simulation is performed using
(nr = 10000, nθ = 32, nϕ = 2) points, with the outer
boundary placed at rout = 500. We evolve the conformal

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

P
S
D
ρ

m
a
x
(t

)

F

H1

2f
2p1

0 1 2 3 4 5 6

f [kHz]

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

P
S
D
ρ

m
a
x
(t

)

FIG. 9. Power spectral density of ρmax(t) evolution for res-
olutions of (400 × 24 × 48) (top) and (250 × 32 × 64) (bot-
tom) panel. The vertical lines indicate the fundamental (F )
and first overtone (H1) of the fundamental quasiradial (l = 0)
mode and the fundamental (2f) and first overtone (2p1) of the
fundamental quadrupolar (l = 2) mode (see Table 5 of [198]).

factor W = e−2φ [203], use the SSPRK3 method for time
integration, and the fCCZ4 damping parameters are set
to κ1 = 0.06, κ2 = 0, κ3 = 1. We use WENO-Z recon-
struction, the HLLE Riemann solver, and a Γ−law EOS
with Γ = 2.

The atmosphere value for ρ is set to be 10−8 times the
initial density maximum (ρmin =3.28× 10−11. This sim-
ulation requires the use of the higher atmosphere thresh-
old in highly magnetized regions (described in Sec. III
above), as the collapsing fluid leaves a highly magnetized
atmosphere region behind. In these regions, we reset a
cell to atmosphere if e6φρW < 100e6φρmin.

We use the AHFinderDirect thorn [204, 205] to find
the AH [206] once it has formed during collapse, and
the QuasiLocalMeasures thorn [207, 208] to calculate
the angular momentum of the AH during the evolution.
The SphericalNR interface to these Cartesian diagnos-
tic thorns in the Einstein Toolkit is described in [81].
The BH spin is measured using a surface integral on
the AH [207] or the flat space rotational Killing vector
method [209, 210].

Deep inside the horizon, for points with coordinate
radii r < 0.2 min(rAH), we set fluid variables to at-
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FIG. 11. Time evolution of various mass measurements during
the collapse of model D1.

mosphere values (the magnetic fields are evolved every-
where). Figure 10 shows the time evolution of radial pro-
files (along θ = dθ/2) for the density ρ. The evolution of ρ
shows our modifications to the conservative to primitive
solve in GRHydro: As the star collapses, ρ is first capped
to a maximum value, and then reset to atmosphere deep
inside the AH once it has been found (AHFinderDirect
reports the first finding of an AH at t = 103.8).

In Fig. 11 we plot different mass measurements for the
duration of the simulation. Specifically, we monitor the
total rest mass

M0 =

∫
Σt

ρWe6φ
√
γ̂ d3x, (158)

the Komar mass [211] evaluated as a volume integral (see
e.g. [103])

MKomar =

∫
Σt

(
α(E + S)− 2βiSi

)
e6φ
√
γ̂ d3x, (159)

and the ADM mass [212] of the spacetime, evaluated as
the sum from contributions inside a finite radius rin, eval-

uated as a surface integral, and those outside rin, evalu-
ated as a volume integral [213]

MADM =
1

16π

∮
rin

(∆Γr − 8eφD̄rφ)
√
γ̂ dθdϕ

+
1

16π

∫
r>rin

[
e5φ(16πE + ĀijĀ

ij − 2

3
K2)

−∆Γijk∆Γjik

+ (1− eφ)R̄
]√

γ̂ drdθdϕ. (160)

Comparing with the expressions found in [213] terms con-
taining ∆Γkjk are missing in the above expression, this is
due to the fact that

∆Γkjk =
1√
γ̄
D̂j
√
γ̄, (161)

which, together with our choice of γ̄ = γ̂ results in
∆Γkjk = 0. Finally, we compute the BH mass calculated

as the Christodoulou mass [214]

MBH =

(
M2

irr +
4πJ2

A

) 1
2

, (162)

where Mirr is the BH irreducible mass, J the BH angular
momentum, and A the AH area.

The mass measurements agree well with their initial
value of the equilibrium neutron star. As the collapse
proceeds, the total rest mass M0 is seen to drop when
the density deep inside the star is capped (see Fig. 10)
and then quickly drops to zero once an AH has been
found, as we exclude points within the horizon from vol-
ume integrals. The same drop is observed in the calcula-
tion of MKomar, which also exhibits a stronger deviation
from its initial value earlier, due to the fact that it is
only defined for stationary spacetimes, and the collapse
is an inherently dynamical process. Towards the end of
the simulations, the calculation of the ADM mass via a
surface integral shows oscillations related to the gravita-
tional radiation leaving the domain and being partially
reflected at the outer boundary.

After collapse, the newly formed BH is expected to
quickly settle down to a Kerr BH via the ringdown of
the BH’s quasinormal modes (for a review see [215]). To
see if our simulation reproduces this expected behavior,
in Figs. 12 and 13 we plot the l = 2 to 8, m = 0 modes
of the Weyl scalar Ψ4, split into even and odd l-modes,
respectively. The ringdown of all modes is clearly seen,
as well beatings in the higher order modes, whose origin
(the equal m mode mixing of spherical and spheroidal
harmonics) we have explained in [81].

The simulation shows that our spherical GRMHD code
is capable of capturing the relevant dynamics of the col-
lapse of the magnetized uniformly rotating neutron star
to a Kerr BH, capturing the post-collapse ringdown to
Kerr with very high accuracy, with all modes dropping
down to their initial background amplitudes.
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V. CONCLUSIONS AND OUTLOOK

We have extended our vacuum numerical relativ-
ity code in spherical coordinates within the Einstein
Toolkit [81] to a framework that numerically solves the
coupled fCCZ4/BSSN and GRMHD equations in spher-
ical coordinates without symmetry assumptions using a
reference-metric formalism.

Extending the existing spacetime evolution thorn
SphericalBSSN to evolve the fCCZ4 system with con-
straint damping as well, enables future users of the frame-
work with two distinct evolution systems for numerical
relativity in spherical coordinates. The spacetime evolu-
tion thorn was written from scratch using NRPy+, while
the implementation of the reference-metric formalism
GRMHD equations derived in this work was built as an
extension of the GRHydro thorn, again using NRPy+.

In our approach, the GRMHD equations in spherical
coordinates acquire a “Cartesian” form, as all informa-
tion about the underlying spherical coordinate system
is encoded in source terms of the equations. This has
allowed us to use many of the core Cartesian building
blocks of the HRSC finite volume implementation already
present in GRHydro without modifications (and will en-

able the straightforward inclusion of Cartesian finite vol-
ume building blocks such as more sophisticated Riemann
solvers in the future). Without the reference-metric ap-
proach, these building blocks would need to be adapted
to spherical coordinates. Further, instead of evolving
the magnetic field directly, the framework evolves the
cell-centered vector potential in the generalized Lorenz
gauge, guaranteeing the absence of magnetic monopoles
to roundoff error during the evolution by calculating the
magnetic field as the curl of the vector potential.

We have tested our framework performing a set of de-
manding tests in flat background as well as fully dynami-
cal spacetimes. We have chosen setups where the symme-
tries of the fluid are not aligned with the symmetries of
the coordinate system (counter to our original motivation
for developing the code). These tests include off-centered
magnetized spherical explosions testing the passage of
shocks and rarefaction waves through the coordinate ori-
gin and polar axis, as well as dynamical-spacetime simu-
lations of a uniformly rotating neutron star with its rota-
tion axis misaligned with the polar axis of the computa-
tional grid. Finally, we have shown that the code is able
to perform simulations of the collapse of a magnetized
uniformly rotating neutron star to a Kerr BH.

The SphericalNR framework will be made public and
proposed to be included in a future official release of the
Einstein Toolkit.
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