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ABSTRACT Electroencephalography (EEG) is a non-invasive technology used for the human brain-
computer interface. One of its important applications is the evaluation of the mental state of an individual,
such as workload estimation. In previous works, common spatial pattern feature extraction methods have
been proposed for the EEG-based workload detection. Recently, several novel methods were introduced to
detect EEG pattern workloads. However, it is still unknown which one of these methods is the one that offers
the best performance for the workload EEG pattern feature detection. In this paper, four methods were used
to extract workload EEG features: (a) common spatial pattern feature extraction; (b) temporally constrained
sparse group spatial pattern feature extraction; (c) EEGnet; and (d) the new proposed shallow convolutional
neural network for workload estimation (WLnet). The classification accuracy of these four methods was
compared. Experimental results demonstrate that the proposed WLnet achieved the best detection accuracy
in both stress and non-stress conditions. We believe that the proposed methods may be relevant to real-life
applications of mental workload estimation.

INDEX TERMS Shallow neural network, electroencephalogram, human computer interface, workload
estimation, EEG

I. INTRODUCTION

Mental workload estimation-based brain-computer interface
has been widely used in many areas, such as in improving
the performance of brain-computer interface (BCI), in educa-
tional applications or also in adapting the difficulty of a task
[1]–[5]. In previous research works, workload detection has
been mainly based on the subjects’ behaviour, eye movement,
heart rate and brain activity [6]–[10].

Electroencephalography (EEG) signals and near-infrared
sensors (NIRS) are usually the technologies used for non-
invasive BCI [4], [11]. EEG equipment consists of metal

electrodes which are placed directly on the scalp to record
electrical signals [12]. The electrodes record the activity of
the surrounding neurons [13]. The other BCI system men-
tioned previously, the NIRS recording system, is generally
used to measure hemodynamic signals from target regions of
the brain [14].

Although some literature has shown that NIRS signals
could be used to estimate the mental workload status ( [15]–
[17]), in this paper we focus on EEG technology for this task,
because it is cheaper and more conveniently portable [18].
EEG signals include a lot of spatio-temporal information
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of human activity [8]. It is a robust technology which can
quantify an individual’s mental condition. In 2012, Brouwer
et al. introduced a workload estimation system based on EEG
spectral power and event-related potentials [3]. The mental
workload was mainly quantified using α (8-12 Hz) and β
(12-30 Hz) bands of the EEG signal, as previous research
revealed that they are highly correlated with mental workload
[19]–[21]. Mühl et al. built a novel workload experimental
protocol based on EEG signals [8]. All of the subjects were
asked to participated in the n-back tasks. The tasks were
divided into low and high workload tasks. To classify the
low and high-workload EEG signals, they proposed a filter
bank common spatial pattern (FBCSP) [8], [22], [23]. The
EEG signals were first filtered by specific frequency bands
and common spatial pattern (CSP) was used to detect the
EEG features. Linear classifiers, such as linear discriminate
analysis, or support vector machines were used for the clas-
sification. While this method is widely used, it still has some
disadvantages. For example, not all the the selected features
are useful for the classification, and thus further processing is
necessary.

To improve the classification accuracy of motor imagery
EEG signals, Zhang et al. proposed a novel algorithm for
the EEG feature extraction in 2018 [24]. The algorithm
optimized the filter banks and the time window. The results
indicated that this algorithm has better feature extraction
abilities for motor imagery EEG signals.

In addition, artificial neural network methods have played
an important role for EEG signal processing in the last 10
years [25]. Some studies have indicated that deep neural
networks can automatically detect EEG patterns [26]–[29].
Many efficient neural networks have been applied for the
brain signal processing [30]–[32]. Most of the previous re-
search have been focused on EEG motor imagery dataset
classification, steady state visually-evoked potentials detec-
tion, event-related potential or P300 experiments [30], [33]–
[35]. For example, Event Related Potential Encoder Network
was introduced for large-scale dataset processing in [29].
Recurrent neural networks (RNN) and long short term mem-
ory (LSTM) networks have been used in many time-series
processing and prediction problems [36]–[38]. However, the
experiments revealed that the architecture of such types of
neural networks cannot detect useful features from raw EEG
signals. Many studies have shown that before using LSTM
networks, feature detection approaches are necessary [28],
[39], [40]. Traditional methods to help the neural network to
extract EEG features include using wavelet or Fourier trans-
forms [41]–[46]. In 2010, Phan and Cichocki used tensor
decomposition for motion imagery EEG feature extraction
and achieved very good results [47]. However, we attempted
to implement these methods for estimating the workload
using EEG, but the accuracy was lower than when applying
FBCSP methods.

It is important to note that training a deep neural network
requires a large amount of data samples in order to achieve
a satisfactory accuracy, but EEG datasets usually contains a

small amount of samples. This is another limitation related
to the use of deep neural networks for EEG processing, as
having few samples always leads to the overfitting problem
[30], [48], [49]. This further leads to less accurate and thus
unreliable detection results for many BCI applications. To
solve this problem, Dinarès et al. [50] used for the first time
empirical mode decomposition to get different components
of the original EEG signals, and then, artificially create EEG
signals by mixing the obtained components. This strategy
was also used by Zhang et al. [30] to increase the dataset size
and train a deep-learning network. Another approach to the
problem is to use generative adversarial networks to generate
artificial EEG signals [51], [52]. However, we tried to use
this strategy to train a deep neural network for the workload
dataset, but the achieved accuracy was still worst than the one
obtained with classical CSP or FBCSP methods.

To overcome the above mentioned limitations of existing
approaches, in this paper, two new types of neural networks
are proposed and evaluated to identify mental workload.
The first one is EEGNet, a compact convolutional neural
network proposed by Lawhern et al. in 2018 [53]. The second
approach is based on a shallow convolutional neural network
termed WLnet (WorkLoad network). We used the workload
dataset provided by Fabien Lotte research group at INRIA
[8] to validate the performance of our neural networks.
We also applied CSP and TCSGSP/LDA for this workload
classification task. Compared with all of the other methods,
WLnet achieved the best accuracy.

This paper is organized as follows: EEG-based workload
dataset description, along with an introduction to the methods
of CSP, TCSGSP, EEGnet and the proposed WLnet, are
included in Section II. EEG-based workload classification
results are presented in Section III. The discussion and con-
clusions are given in Section IV and Section V respectively.

II. METHODS

Our work aims to compare four methods for workload de-
tection. Here, we present a review on CSP, TCSGSP and
EEGNet, followed by an introduction of the new proposed
WLnet method.

A. COMMON SPATIAL PATTERN

CSP is a classical feature extraction method widely used in
motor imagery signal processing. CSP designs a spatial filter
where the variance of the filtered time series can be used to
reliably discriminate between the two workload conditions.
The CSP spatial filter casts the multi-channel EEG signals
into more distinctive time series and compresses the channels
of EEG signals. The extracted features are usually classified
by using a linear discriminant analysis (LDA) classifier.
Support Vector Machines (SVM) can provide similar results
although it requires to properly tune parameters to ensure
good results.
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(a) Representation of the CSP method. After a bandpass filter, CSP patterns are extracted from EEG signals. Later, CSP patterns
are classified with LDA.

(b) Representation of the TCSGSP method. EEG signals are bandpassed with several filter banks. A time window slides from
the start to the end of EEG signals. For each filter bank and time window, CSP patterns are extracted. After extracting the CSP
patterns, the Lasso optimization model is used to optimize the CSP patterns. The optimized CSP patterns are classified with LDA.

FIGURE 1: The illustration of CSP and TCSGSP methods.

B. TEMPORALLY CONSTRAINED SPARSE GROUP
SPATIAL PATTERNS
Temporally Constrained Sparse Group Spatial Patterns (TC-
SGSP) is a deep-extension CSP method which was proposed
by Zhang et al., 2018 [24]. CSP, from Section.II-A, is applied
on the selection of spatial pattern. The features of EEG
signals can be represented into both the frequency and time
domains. CSP doesn’t optimize the features simultaneously
from these two domains. To optimize the filter bands, FBCSP
extracts CSP features from different filter banks. Moreover,
TCSGSP does not only optimize the CSP features from
filter banks, but also optimizes them from the time domain.
TCSGSP implements bandpass filtering with K overlapping
sub-bands on N EEG trials. In each filter band, there are
T overlapping time windows. From each time window, M
CSP features will be extracted. We can obtain T CSP feature
setsZN×MK . After that, the multitask learning-based feature
optimization model, Lasso, is used to filter the features. The
Lasso is obtained from the following formula:

U = arg minU
1

2

T∑
t=1

‖Z(t)ut − y‖22 + β1‖U‖1 + β2‖U‖2,1

+ β3

T∑
t=1

‖ut − ut+1‖1

(1)
where U = [u1, · · · , uT ]. ‖∗‖1 and ‖∗‖2,1 denote the

l1-norm and l2,1-norm of the matrix, respectively. In our
work, the overlapping filter banks used were: 0.5-4.5Hz, 2.5-
6.5Hz,· · · ,58.5-62.5Hz, 62.5-64Hz. The time windows were
0.5s : 0-0.5s, 0.03125-0.53125s, · · · . In has been previously
proved in literature [24] that the classification results are not
heavily influenced by the three hyper-parameters, β1,β2,β3.
Therefore β1,β2,β3 are all set to a medium value 7.0. Fig. 1
illustrates the CSP and the TCSGSP methods.

C. EEGNET

Considering that the amount of EEG signal data is limited, a
shallow neural network termed EEGNet was designed specif-
ically for EEG-based BCIs in [53]. Depthwise convolutional
layer and separable convolutional layer are introduced in
EEGNet to obtain a simple but effective structure. As a
result, three convolution layers are included in the compact
architecture, and a dense layer follows in order to classify
the trials into the different classes. It has been used not
only in motor imagery EEG signals, but also for steady state
visually evoked potentials, too [54]. We set part of the hyper-
parameters in concordance with the dataset (N=2, fs=32,
C=28, T=257) and only tuned the batch size, learning rate and
the probability of dropout. Details of the EEGNet are shown
in Fig. 2, and the search range of these hyper-parameters are
shown in Tab. 1. According to the hyper-parameter search
results, batch size = 32, lr = 0.0005 and p = 0.5 gave the
best accuracy.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3044732, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Convolution Layer
feature map
(28,257)@4 

Input
feature map
(28,257)@1

Depthwise Convolution Layer
feature map

(1,64)@8 

Depthwise

Average Pooling

Separable Convolution Layer
feature map

(1,8)@8 

Separable

Average Pooling

Dense Layer
output

(2,)

Low

High

Feature Extraction Classification

FIGURE 2: The architecture of the EEGNet. EEG data is first fed to three convolution layers for feature extraction. This is
followed by a dense layer to project features into two units. The trainable variables in EEGNet is 846.

TABLE 1: Hyper-parameter search range of EEGNet for
workload EEG signals

Hyper-parameters Search range
batch size 32, 64, 128

lr 1e−4, 3e−4, 5e−4, 1e−3

p 0.0, 0.5

D. WLNET
Recently, some one-dimensional convolutional neural net-
works were also proposed for EEG signals achieving
good performance [30]. Similar to separable convolutional
layer and depthwise convolutional layer in EEGNet, one-
dimensional convolutional layer also has far less learnable
parameters as compared to traditional two-dimensional con-
volutional layer. Inspired by these facts, here we propose
the shallow one-dimensional neural network referred to as
WLnet for workload detection. Two convolution layers and
one dense layer are included in our WLnet. The architecture
is shown in Fig. 3 and the hyper-parameters we used are listed
in Tab. 2.

In the first convolution layer, we use filters with a kernel
size of 3 to downsample the signals into 128 time-points with
a stride of 2. Note that the padding mode we used is ‘Valid’
so we set the padding to 0 because there are no time-points
left after the convolution. Batch normalization and the ReLU
function are then applied to make the network easier to train
and obtain a better performance. Max pooling is then used
to downsample and get a smaller amount of parameters. This
structure is repeated in the second convolution layer, and in
the end 1024 features are obtained after flattening. Here we
set the padding to 1, since one time point is left after the
convolution or pooling. A dense layer is added at the end

to project features into two classes: high workload level and
low workload level. In the end, we set batch size = 64 and
lr = 0.0003.

III. EXPERIMENTS AND RESULTS
A. WORKLOAD DATASET

The dataset used in this work was provided by Fabien
Lotte research group at INRIA [8], which includes 22 sub-
jects. In that study, each subject was asked to participate
in the n-back tasks under two affective contexts: stressful
and non-stressful (relax). High-workload signals (2-back
task) and low-workload signals (0-back task) were used,
and each workload level contained signals recorded under
both affective contexts (stress and non-stress). One subject
was discarded because the data only included one condition.
Moreover, as the trials in the non-stress setting for 4 subjects
were less than 720, they were also eliminated from the
experiments to ensure a fair comparison of results. Therefore,
only 18 subjects were used to validate the methods.

For the rest of the subjects, 1440 EEG trials were recorded
in total, of which 720 are high-workload (360 stressful and
360 non-stressful) and 720 are low-workload (360 stressful
and 360 non-stressful as well). As shown in Fig. 4, 28
channels were used according to the 10/20 system except
for T7, T8, Fp1 and Fp2, and 257 time-points were recorded
for each trial. All signals were filtered through a bandpass
of frequency between 0.5 and 64 Hz and downsampled to
128Hz (see [8] for details).

B. EXPERIMENT SETTINGS
In our work, we apply the test and record the binary accuracy
on stressful and non-stressful workload data with four meth-
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FIGURE 3: The architecture of the WLnet. Two one-dimensional convolution layers are used for extraction, and a dense
layer is used for classification as the output layer. The trainable variables in WLnet is 3834.

TABLE 2: Hyper-parameters for WLnet

Layers Hyper-parameters Activation Output
Input \ \ (B, 28, 257)

Conv1D k = 3, s = 2, C = 32, padding = 0 \ (B, 32, 128)
BatchNormalization1D \ ReLU (B, 32, 128)

MaxPooling1D k = 3, s = 2, padding = 1 \ (B, 32, 64)
Conv1D k = 3, s = 2, C = 64, padding = 1 \ (B, 64, 32)

BatchNormalization1D \ ReLU (B, 64, 32)
MaxPooling1D k = 3, s = 2, padding = 1 \ (B, 64, 16)

Flatten \ \ (B, 1024)
Linear out_feature = 2 Softmax (B, 2)
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FIGURE 4: The EEG electrodes’ location used in the
workload experiment. A 10/20 EEG recording system was
used for the data collection.

ods mentioned above. Two scenes are designed as reported
in [8]. (1) For within-context, 720 trials from stressful or
non-stressful context are applied for training and testing.
Results were calculated by conducting a 6-fold cross vali-
dation, following the same criteria used in [8] to ensure a fair
comparison of the results. (2) For cross-context, 720 trials

from stressful or non-stressful context are applied for training
and the rest from another context for testing. Results were
obtained by taking the mean value of 5 repeated experiments.
We used the results reported in [8] as the baseline, which
were obtained using filter bank common spatial patterns
(FBCSP) with the event related potentials (ERP). Note that
all experiments in our paper used the Adam algorithm to
optimize networks with cross-entropy as the loss function,
and all the results of the neural networks were obtained by
early stopping when the value of the loss function in the
validation data did not change for 20 consecutive iterations
using epoch = 200.

C. RESULTS

For the within-context experiments, we first trained and
tested the model using the data from the stress context, and
then repeated the process using the data from the non-stress
context. On the other hand, for the cross-context experiments,
we first trained our models using all the data from the stress
context and then tested them on all the non-stress context data
and vice versa in another similar experiment. Results of the
average accuracy of all 18 subjects are shown in Fig. 5.

Compared to traditional machine learning methods, such
as CSP/LDA, TCSGSP/LDA and FB/ERP, convolutional lay-
ers in EEGNet and WLnet can extract feature automatically
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FIGURE 5: The results on within-context classification and cross-context classification. Bars denote average values of the
accuracy, black lines indicate the standard deviation. Results of within-context accuracy are on the left,and the cross-context
accuracy results are on the right. Labels on the x-axis represent the trials for training; for example, Stress means the model is
trained using trials from the stress context. The y-label represents the binary accuracy.

rather than manually. Results in Fig. 5 show that WLnet
achieves higher binary accuracy in within-context task. Over-
all, the model works best in a cross-context task as well.
In other words, the proposed WLnet is more powerful in
both tasks. We applied Kolmogorov-Smirnov test for the
results and it confirmed that the accuracy was normally
distributed at a significance level of 0.01. To compare the
accuracy between two neural networks, we used two-sample
t-Test. The null hypothesis was rejected at the significance
level of 1%, indicating that the accuracy values of the two
networks had statistically significant differences for within-
context task and cross-context tasks. We would also like to
point out that the WLnet is a lightweight network similar to
the EEGNet, which allows it to be accessed, for example, by
mobile devices.

IV. DISCUSSION
Even though some literature indicates that deep neural net-
work could achieve good performance for EEG processing,
we tried all of the deep neural network architectures known
to us, and some of them had overfitting issues whilst others
showed unreliable results. For real life applications, a robust
and stable method is necessary, so we selected shallow neural
networks instead.

In the experiment of within-context and cross-context clas-
sification, it can be seen that all three models could achieve
higher accuracy score in within-context tasks compared to
the cross-context tasks, which means that a different affec-
tive context does influence the workload level, leading to a
different distribution on data.

To provide more details of the experiments, the loss curve
of WLnet is depicted in Fig. 6. Besides, the ROC curves of

both WLnet and EEGNet for Subject 1 are shown in Fig. 7.
In both cases the data used to plot them is from the within-
context task of stressful context. The loss curve is obtained
from one of the six folds cross validation, which demon-
strates how WLnet avoids overfitting with the early stop
strategy. The ROC curve in Fig. 7 is calculated averaging the
curves of the 6 folds. One-dimensional linear interpolation is
applied in each fold to obtain 100 points. Results also show
the superiority of WLnet, which has higher AUC value than
EEGNet. Note that in our experiments, the size of neural
networks is different. EEGNet has 846 trainable variables and
WLnet has 3834 trainable variables.

V. CONCLUSION

EEG has been used to estimate the human workload status
by means of experimental protocols. For these workload
estimations, we have tried several approaches, including (a)
common spatial pattern feature extraction; (b) temporally
constrained sparse group spatial patterns feature extraction;
(c)EEGnet; (d) the proposed WLnet, based on shallow convo-
lutional neural networks. Experimental results demonstrate
that WLnet achieved the best detection accuracy in both
stress and non-stress conditions. We also analysed the detec-
tion accuracy for each individual subject. The WLnet was
robust enough to overcome the overfitting problem. For the
workload dataset, it achieved the best classification accuracy.
Our research not only proposes several methods to process
the workload EEG signals, but also provides the comparison
for different subjects, methods and conditions. All of this
information is critical for the development of workload es-
timation BCI applications.
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