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ABSTRACT

We present the first year data set of high-cadence, long-duration observations of the bright millisecond

pulsar J0437−4715 obtained in the Argentine Institute of Radioastronomy (IAR). Using two single-dish

30-m radio antennas, we gather more than 700 hours of good-quality data with timing precision better

than 1 µs. We characterize the white and red timing noise in IAR’s observations, we quantify the

effects of scintillation, and we perform single pulsar searches of continuous gravitational waves, setting

constraints in the nHz–µHz frequency range. We demonstrate IAR’s potential for performing pulsar

monitoring in the 1.4 GHz radio band for long periods of time with a daily cadence. In particular, we

conclude that the ongoing observational campaign of the millisecond pulsar J0437−4715 can contribute

to increase the sensitivity of the existing pulsar timing arrays.

Keywords: editorials, notices — miscellaneous — catalogs — surveys

1. INTRODUCTION

The Argentine Institute of Radio astronomy (IAR)

is equipped with two single-dish 30-meter antennas –

dubbed A1 and A21– capable of performing daily ob-

servations of pulsars in the southern hemisphere at 1.4

GHz. These antennas were recently refurbished to ob-

tain high-quality timing observations as described in

Gancio et al. (2020).

Pulsar Monitoring in Argentina2 (PuMA), is a scien-

tific collaboration dedicated to pulsar observations from

the southern hemisphere. As part of IAR’s observatory

developing stage, accurate timing observations of the

Corresponding author: C. O. Lousto

colsma@rit.edu

1 In 2019 the antennas A1 and A2 were renamed “Varsavsky” and
“Bajaja”, respectively.

2 http://puma.iar.unlp.edu.ar

millisecond pulsar (MSP) J0437−4715 with both anten-

nas have been carried out since April 22nd 2019, with

a daily follow-up only interrupted during hardware up-

grades or bad weather conditions.

The MSP J0437−4715 was discovered in 1993 by

Johnston et al. (1993), and it is one of the brightest

(mean flux density S1400 = 150.2 mJy) and closest

(d = 156.79 ± 0.25 pc) pulsars. It has a short period

(P = 5.758 ms) and it is one of the most massive pul-

sars known to date (m = 1.44±0.07 M�; Reardon 2018).

This pulsar is in a binary system and in an almost cir-

cular orbit of period 5.74 days. The secondary star is a

low mass (∼ 0.2 M�), helium white dwarf, with strong

visible emission (Danziger et al. 1993). In the interstel-

lar region, an optical bow shock was also reported by

Bell et al. (1993). In addition, J0437−4715 was the first

MSP detected in X-rays (Becker & Trümper 1993) and

the only one for which individual pulses have been stud-

ied. It is also the first one detected in the ultraviolet,
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although in this wavelength its spectrum is consistent

with that of a black body (Lorimer & Kramer 2012) and

pulsed emission was not seen (Kargaltsev et al. 2004).

Because of its proximity to Earth, J0437−4715 is

one of the two pulsars with a well-determined three-

dimensional orientation of the orbit (van Straten et al.

2001). In addition, its radio emission does not present

much nulling, short scale variation of its integrated pro-

file or mode-changing (Vivekanand et al. 1998), phenom-

ena associated with longer-period pulsars. This suggests

that the origin of the radiative processes in this pul-

sar is different from the mechanisms in regular pulsars.

Moreover, J0437−4715 displays intrinsic and quasiperi-

odic variations in its flux, (not observed in other pulsars;

Vivekanand et al. 1998), and extrinsic variations, due to

interstellar medium (ISM) scintillations (Os lowski et al.

2014).

PSR J0437−4715 stands out for having an extremely

stable rotation rate which makes it a natural clock with

a similar stability to that of an atomic clock (Hartnett

& Luiten 2011) and better over timescales longer than

a year (Matsakis et al. 1997). Only two other pulsars,

PSR B1855+09 and PSR B1937+21, have a compara-

ble stability (Kaspi et al. 1994). These characteristics of

J0437−4715 make it an ideal candidate for pulsar-timing

studies. Its high declination in the southern hemisphere

makes its observation from the northern hemisphere dif-

ficult to achieve (see Fig. 2 of Ferdman et al. 2010). This

MSP is also in the opposite direction to the Galactic cen-

ter, where few pulsars are observed. For these reasons,

performing daily observations of J0437−4715 is a key

science project at IAR, improving upon the weekly to

monthly cadence of other observatories in the Interna-

tional Pulsar Timing Array consortium (IPTA; Perera

et al. 2019; Lam & Hazboun 2020). This is currently

of particular interest as the NANOGrav collaboration is

on the verge of detecting an isotropic stochastic grav-

itational wave background (GWB; Arzoumanian et al.

2020).

In this work, we use the properties of J0437−4715

–high rotational stability, high luminosity, and short

period– to assess the quality of the observations at IAR

with both antennas. This builds upon the preliminary

analysis presented in Gancio et al. (2020) which sug-

gested they reach a precision of . 1 µs.

The paper is organized as follows: Sect. 2 introduces

the observations and the reduction methods. In Sect. 3

we describe the observations in terms of their signal-to-

noise ratio (S/N) and its relation to interstellar scintil-

lation. In Sect. 4 we present the timing results and we

study the influence of the S/N and bandwidth (BW )

on the timing analysis; further details on this analy-

sis are provided in the Appendix A. In Sect. 5 we use

the ENTERPRISE software to perform a noise analysis

of the observations and estimate the contribution of a

gravitational-wave background. Finally, in Sect. 6 we

present the main conclusions of our study.

2. OBSERVATIONS

As described in more detail in Gancio et al. (2020),

the design of the antennas allows to observe a source

continuously during 220 min. Their receivers are not

currently refrigerated and have a system temperature of

Tsys ∼ 100 K. The back-end is based on two SDRs which

acquire raw samples with a maximum rate of 56 MHz per

board. A1 uses these two digital plates in consecutive

radio frequencies with a total bandwidth of 112 MHz in

a single polarization mode; while A2 uses those digital

plates in one per polarization, thus covering a band-

width of 56 MHz. Those characteristics are summarized

in Table 1. In November 2019, A1’s receiver front-end

went into commissioning. The electronics and systems

were verified and improved, resulting in a slightly higher

sensitivity and the recovery of the second polarization.

Nonetheless, the observations were retaken with the pre-

vious configuration to have a homogeneous data set.

A1 A2

Number of observations 170 (145*) 197 (171*)

MJD start – MJD finish 58596.7 – 58999.6

Total observation time [h] 391 (372*) 393 (381*)

Central frequency [MHz] 1400, 1415, 1428 1428

Bandwidth (BW ) 112 MHz 56 MHz

Polarization modes 1 2

Frequency channels (nchan) 64/128 64

Time resolution [µs] 73.14

Phase bins (nbin) 512/1024

Table 1. Parameters of the observations analyzed in this
work. Values marked with (*) correspond to the restricted
data set used in Sect. 5 (observations lasting more than 40
min that achieve a S/N > 40 and σTOA < 1 µs).

In this work we present the analysis of a data set of 170

observations with A1 and 197 with A2 over an interval

of 13 months, from April 23rd 2019 to May 30th 2020.

This includes days with multiple observations (89 days

with 2 observations, 24 days with 3, and 1 day with 4).

The observations add up to over 390 hs of observation

with each antenna (Table 1), leading to an observation

efficacy of 0.26 for both antennas. This efficacy is aimed

to be improved in a future considering that (i) A1 under-

went maintenance between October 8th and November

29th 2019, (ii) an unusually loud source of local radio
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frequency interferences (RFIs) was particularly active in

June–July 2019 during morning time, affecting more no-

tably to A1, (iii) during February 2020 the observations

stopped due to tests in the new automated pointing soft-

ware and scheduler, (iv) A2 had lost observing time due

to problems with a hard disk.

The receptor in A1 became more sensitive to local

RFIs after its upgrade in December 2019. We found that

the program rfiClean3 (Maan et al. 2020, in prep.)

gave better results than the rfifind task in PRESTO to

clean RFIs. We therefore ran both softwares in all A1

observations carried out from November 2019 onwards.

The observations, stored in filterbank format 4, were

folded and de-dispersed with PRESTO (Ransom et al.

2003; Ransom 2011) using nbins = 512 or 1024 phase

bins5 and nchan = 64 frequency channels for A2 ob-

servations and nchan = 64 or 128 for A1 observations.

The data were folded using the timing flag of the task

prepfold and the parameter (.par) file provided by

IPTA6, “Combination B” with edits adapted to the IAR

site. We then calculated the time of arrival (TOA) of

the pulses using the pat package in PSRCHIVE (Hotan

et al. 2004) with a Fourier Phase Gradient (PGS) match-

ing template fitting (Taylor 1992). The template was

obtained applying a smoothing wavelet algorithm to a

best profile; a more detailed discussion of the template

selection is provided in Appendix A.2. The TOAs in

this data set were fixed of clock systematics on April

22nd 2019 (MJD 58595), when we reached an accuracy

of < 1 µs (we refer to Gancio et al. 2020, for details on

clock settings).

3. ANALYSIS OF THE OBSERVATIONS

3.1. Signal-to-noise ratio of the observations

In order to characterize the S/N of the observations we

use the functions getDuration and getSN of the Python

package PyPulse7 (Lam 2017). In Fig. 1 we show the

S/N of each observation as a function of their duration.

The mean S/N of observations with A1 is 151 and with

A2 is 105, with mean observing times of 147 min and

116 min, respectively. However, we note that these num-

bers are affected by many short and low-quality obser-

vations.

When we restrict our analysis to observations with

S/N > 50, the mean S/N for observations with A1 in-

3 https://github.com/ymaan4/rfiClean
4 http://sigproc.sourceforge.net/
5 In Appendix A.3 we show that the number of phase bins does

not affect the posterior analysis as long as nbins ≥ 256.
6 http://ipta4gw.org//data-release/
7 https://github.com/mtlam/PyPulse

10 50 100 150 200
tobs [minutes]

0

50

100

150

200

250

300

S
/N

A1

A2

Figure 1. S/N of the observations of each antenna as a
function of their tobs. We also plot f(tobs) = a

√
tobs, where

a = 13.1 min−1/2 for A1 and a = 11.1 min−1/2 for A2.

creases to 166 and with A2 to 122, with mean observing

times of 162 min and 124 min, respectively. We summa-

rize these and other values in Table 2.

We observe a positive correlation between S/N and

tobs, fitting to a S/N ∝ √tobs as expected (Lorimer &

Kramer 2012):

S/N =
√
nP tobs BW

(
Tpeak

Tsys

) √
W (P −W )

P
, (1)

where P is the pulsar period and W its width, Tpeak

its maximum amplitude, Tsys is the noise temperature

of the system, tobs is the observing time, and nP the

number of polarizations observed.

We collect the observation per S/N for each antenna

and display them as histograms in Fig. 2. We observe a

distribution for A1 with a mean higher than the corre-

sponding distribution for A2, perhaps due to the broader

band sensitivity of A1.

We collect the observations into sets of S/N > 1, 50,

80, 110, 140 and 170, corresponding to roughly the po-

sition of the larger bins in the A2 histogram. In Table 2

we specify the number of observations, mean duration

and mean S/N for each of these sets.

3.2. Scintillations

In what follows we assume that the expected S/N

scales ∝ √tobs and that additional variations in the S/N

are due to scintillation. We note that the observations

described in Sec. 2 lack of absolute flux calibrations and

thus possible variations in Tsys are not accounted for.

Moreover, RFIs are also variable and their mitigation

leads to variations in the effective bandwidth of each

https://github.com/ymaan4/rfiClean
http://sigproc.sourceforge.net/
http://ipta4gw.org//data-release/
https://github.com/mtlam/PyPulse
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S/N > 1 S/N > 50 S/N > 80 S/N > 110 S/N > 140 S/N > 170

N 〈S/N〉 〈tobs〉 N 〈S/N〉 〈tobs〉 N 〈S/N〉 〈tobs〉 N 〈S/N〉 〈tobs〉 N 〈S/N〉 〈tobs〉 N 〈S/N〉 〈tobs〉
A1 170 151 147 159 160 155 150 166 160 120 183 166 96 197 180 59 223 187

A2 197 105 116 164 120 121 128 136 146 88 153 178 58 168 192 22 192 194

A1+A2 367 127 130 323 140 140 278 152 154 208 170 171 154 186 182 81 214 191

Table 2. Number of observations N , mean S/N, and mean tobs expressed in minutes per S/N subset per antenna.
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Figure 2. Histogram of the observations for each antenna,
A1 and A2, according to its S/N.

observation, so additional dispersion in the S/N vs. tobs

relation is also expected.

To quantify the variations due to scintillation we build

a projected pulse S/N as S/Nproj = S/N
√
tmax/tobs,

with tmax = 217 min. Given that short observations

have a large uncertainty in their determined S/N, we

only use observations with tobs > 20 min (which is

roughly half of the scintillation timescale). Fig. 3 shows

a histogram of the projected pulse S/N for A1 and A2.

The line shows the estimated probability density func-

tion (PDF) from scintillation (Cordes & Chernoff 1997)

fS(S|nISS) =
(SnISS/S0)

nISS

SΓ(nISS)
exp

(−SnISS

S0

)
Θ(S),

(2)

where nISS is the number of scintles, S0 is the mean

value of the signal S (i.e., S0 = 〈S/N〉), and Θ is

the Heaviside step function. We calculate nISS by fit-

ting the normalized8 data for each antenna. We obtain

nISS = 2.67± 0.31 for A1 and nISS = 2.17± 0.25 for A2,

with S0 = 127.27 for A1 and S0 = 87.16 for A2. The

bin size is determined using Knuth’s rule (Knuth 2006)

algorithm provided in astropy (Astropy Collaboration

8 We normalize the number of observations in each S/N bin by the
total of observations of each antenna.

et al. 2013, 2018), though we confirm that the obtained

values do not depend on the binning by repeating the

analysis for different bin sizes.

In addition, we make use of the long duration of the

observations that is significantly larger than the typ-

ical scintillation timescale for J0437−4715. We split

the observations in segments lasting tmin = 2000 s and

tmin = 5000 s and repeat the previous analysis. In this

case we obtain larger values of nISS ∼ 5.

For each of these fittings we performed a Kolmogorov-

Smirnov test for goodness of fit. This test quantifies a

distance between the empirical distribution of the sam-

ple (obtained from the projected S/N) and the cumu-

lative distribution function of the reference distribution

(obtained from fitting nISS in Eq. 2) under the null hy-

pothesis that the sample is drawn from the reference

distribution. The null hypothesis can be rejected at a

given confidence level α if the resulting p-value is lower

than 1 − α. The p-values obtained are summarized in

Table 3. For α = 0.9 (90% confidence level) we find

that the goodness of fit cannot be statistically rejected

for complete observations with either A1 or A2, or split-

ted observations of A1, all of which have a large p-value.

However, the fits to the splitted observations of A2 fail

this test, suggesting that, for short observations with

A2, Eq. 2 may not be entirely valid or that the estimate

of the projected S/N becomes unreliable.

A1 A2

nISS error p nISS error p

No split 2.67 0.31 0.38 2.17 0.25 0.24

Split tmin = 5000 s 6.33 0.54 0.90 5.53 1.04 0.009

Split tmin = 2000 s 5.50 0.36 0.70 4.63 0.43 0.004

Table 3. Adjusted values of nISS for each set of observations
and the KS test p-value for each fitting.

We compare our values of nISS, with theoretical es-

timations following Lam & Hazboun (2020). We scale

the scintillation parameters given at the frequency of

1.5 GHz by Keith et al. (2013) to match our observa-

tions centered at 1.4 GHz and obtain the scintillation

bandwidth ∆νd = 740 MHz and scintillation timescale



IAR timing analysis of PSR J0437−4715 5

0 50 100 150 200 250 300 350 400
Projected S/N

0

5

10

15

20

25

30

35

40

C
ou

nt
s

S0 = 127.27

nISS = 2.67

0 50 100 150 200 250 300 350 400
Projected S/N

0

5

10

15

20

C
ou

nt
s

S0 = 87.16

nISS = 2.17

0 50 100 150 200 250 300 350 400 450 500 550
Projected S/N

0

10

20

30

40

50

60

70

80

C
ou

nt
s

S0 = 199.4

nISS = 5.5

0 50 100 150 200 250 300 350 400 450 500 550
Projected S/N

0

10

20

30

40

50

60

70

80

C
ou

nt
s

S0 = 146.7

nISS = 4.63

Figure 3. Histograms of projected pulse S/N for PSR J0437−4715 for A1 (left column) and A2 (right column panel). The top
row is for the full observations and the bottom row for observations split in segments such that tmin = 2000 s. The line shows
the estimated scintillation distribution from fitting nISS in Eq. 2.

∆td = 2290 s. We calculate nISS via the usual formula

nISS ≈
(

1 + ηt
T

∆td

)(
1 + ην

BW

∆νd

)
(3)

where ηt and ην are filling factors ∼ 0.2. The estimated

nISS for T = 220 min are 2.22 for A1 (BW = 112 MHz)

and 2.18 for A2 (BW = 56 MHz). We confirm that

the value obtained with A2 is consistent with the ex-

pectations, although for A1 it is larger than expected,

perhaps due to additional factors affecting the variabil-

ity observed.

Gwinn et al. (2006) found two scintillation scales ob-

serving J0437−4715 in 327 MHz. Rescaling those scales

to our observing frequency, 1400 MHz, we find time

scales of ∆td,1 = 5727 s and ∆td,2 = 515 s, leading

to nISS,1 = 1.46 for both antennas and nISS,2 = 6.58

for A1 and nISS,2 = 6.35 for A2. The later values are

close to the ones displayed in Table 3 for the split obser-

vations, consistent with the shorter observations being

more sensitive to the shorter-scale scintillations. Note

also that those scintillations scales have been observed

to vary notably between epochs (Smirnova et al. 2006).

4. TIMING ANALYSIS

Here we discuss the timing-error dependence on three

parameters: (i) the S/N of the observations, (ii) the

number of bins used in the reduction of the observations,

(iii) the BW of the observations. In addition we study

and quantify other sources of systematic errors.

4.1. Timing Residuals

We compute the timing residuals of the TOAs us-

ing Tempo2 (Hobbs et al. 2006) and its Python wrap-

per, libstempo (Vallisneri 2020), with the timing model

given in the file J0437−4715.par provided by IPTA
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and adapted to IAR observatory9. Tempo2 returns: i)

the MJD, residual, and template-fitting error (σTOA)

of each observation, and ii) the timing model param-

eters, the weighted errors of the residuals (RMS), and

the χ2
red = χ2/nfree of the timing model fit to the resid-

uals. The χ2 test considers a good fit when χ2
red ∼ 1;

instead, a value of χ2
red � 1 –assuming the timing model

is correct– indicates the presence of outliers or an un-

derestimation of the residuals errors. In this case we

can

• Assume a certain systematic error in the computa-

tion of the TOAs due, for instance, to instrumen-

tal errors such as observation timestamp, reduced

BW , hidden RFIs, etc.

• Define a criteria to discard the outliers, for in-

stance by vetting residuals above a certain value.

100 200 300 400 500
MJD - 58500

−3

−2

−1

0

1

2

3

R
es

id
u

al
s

[µ
s]

A1

A2

Figure 4. Timing residuals for the complete data set for A1
and A2.

Fig. 4 shows the timing residuals of the observations

taken with each antenna. The values of the χ2
red from

the fits are greater than 1, indicating the presence of

outliers or underestimated errors.

To account for possible systematic errors, we adopt a

simplified approach10 in which we add quadratically a

common σsys to all the σTOA, producing a total error

σ2
tot = σ2

TOA + σ2
sys. (4)

9 In this .par we also included four JUMPs to account for the differ-
ent central frequencies of the observations, and the corresponding
antenna (A1/A2; see Table 1).

10 In Sec. 5 we compare the results of this simplified model with
those obtained using a standard and more refined white noise
model as in Arzoumanian et al. (2016).

We calculate the value of σsys that leads to χ2
red = 1,

obtaining σsys ∼ 0.67 µs for the observations with A1

and σsys ∼ 1.0 µs for the observations with A2. We

recompute the RMS using the corrected errors in the

residuals by adding σsys as in Eq. 4. We obtain RMS =

0.72 µs for A1 and RMS = 1.05 µs for A2.

In order to determine the effect of the outliers mea-

surements we set a 3-σ criteria, but since the σtot itself

depends on the assumed value of σsys, we apply the fol-

lowing iterative process:

1. Given an initial σ
(i)
sys (as obtained previously), to

each TOA we assign an error σ
(i) 2
tot = σ2

TOA+σ
(i) 2
sys .

2. If the residual of an observation is such that |δt| >
3σ

(i)
tot, then this observation is discarded as an out-

lier.

3. If the residual is such that |δt| ≤ 3σ
(i)
tot, then we

keep this observation and its TOA error is given

the new value

σ
(i+1)
tot

2
= σTOA

2 + σ(i+1)
sys

2
, (5)

where σ
(i+1)
sys is chosen such that when the new

residuals are computed we get χ2
red = 1. In prac-

tice, the process converges after 1–2 iterations.

In this way, we eliminate all the outliers in our data

set (5 observations for A1 and 24 for A2) and obtain

refined values of the systematic errors σsys ∼ 0.50 µs

for A1, σsys ∼ 0.66 µs for A2, and σsys ∼ 0.59 µs for

A1+A2.

4.2. Timing versus S/N

We study the timing residuals for each S/N subset for

each antenna; these are shown in Fig. 13. By filtering

out the low S/N observations, those with large residuals

are eliminated. Thus we conclude that outliers tend to

have low S/N; we note, however, that some low S/N

observations also have small residuals.

We perform a timing analysis for A1, A2, and A1+A2.

In all cases –even for large S/N values– we obtain

χ2
red � 1. We interpret this as indicative of unaccounted

systematic errors and we perform the procedure detailed

in Sec. 4.1 to find the values of σsys that lead to χ2
red ≈ 1.

Taking as a reference the case for S/N > 50, we obtain

σsys = 0.5 µs for A1, 0.66 µs for A2, and 0.59 µs for

A1+A2. We note that these values change if we do not

remove the 3-σ outliers, leading to σsys = 0.67 µs for

A1, 0.99 µs for A2, and 0.83 µs for A1+A2.

In Fig. 5 we display the values of σsys and RMS for

each subset of observations with their 1-σ error bars (∼
68% confidence limits). The error bars for σsys are com-

puted as the values σsys,min that yield χ2
red(nfree, α/2)
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and σsys,max that yield χ2
red(nfree, 1 − α/2), with α =

0.32.

The timing RMS diminishes (improves) for higher S/N

observations. The value of the RMS is well-constrained

to & 0.5 µs, though values a bit higher (≈ 0.7 µs) are

obtained for A2 when low-S/N (< 100) observations are

included. In particular, for S/N > 140 we get RMS

≈ 0.52 µs for A1 and 0.55 µs for A2, which is a slight

improvement over those reported in Gancio et al. (2020)

(0.55 µs for A1 and 0.81 µs for A2).

We also obtain a consistent value of σsys ≈ 0.5 µs.

There is a systematic trend of lower σsys towards in-

creasing S/N (Fig. 5), though with a small significance

(close to or below 1-σ level). We conclude that the sys-

tematic errors of both IAR’s antennas are of the order of

0.4–0.6 µs when accounting for outliers and S/N effects.

Finally, the values of σsys and RMS are smaller for

A1 than for A2 for each subset of S/Nmin; this behavior

subsists at the same 〈S/N〉 (Fig. 5). Given that the main

differences between the two antennas are BW and nP,

we explore those dependencies in detail to understand

the reason(s) behind the improved timing precision of

A1.

4.3. Timing versus bandwidth

In Sec. 4.2 we found that the A1 observations have

a lower timing RMS than the corresponding from A2.

Since both antennas differ in their BW (112 MHz for A1

and 56 MHz for A2), and nP (1 and 2 for A1 and A2,

respectively), we reduce the observations to the same

BW and nP in order to quantify the effect of those

hardware differences on errors. For this analysis we use

the 6 subsets of observations defined by their S/N in

Sec. 3.1. We split the A1 observations into two subin-

tervals of BW = 56 MHz using pat for the scrunching

with the options -j "T {n}", where n = 2 is the number

of subintervals. For the observations with A2 we would

like to split the two polarizations separately; however,

this is not possible as these observations only store the

sum of both polarization modes. From the radiometer

equation (Lorimer & Kramer 2012)

σsys ∝
Tsys√
nPBW

, (6)

we see that the errors scale with n
−1/2
P ; hence, we multi-

ply the errors of A2 residuals by a factor
√

2 to simulate

a case with nP = 1 (assuming we are not strongly af-

fected by the polarization of the source).

In this way, for each subset of S/Nmin we have five

groups of observations: three from A1 (one with BW =

112 MHz and two reduced to 56 MHz), and two from A2

(with errors modeled to 2 and 1 polarization modes). We
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Figure 5. Top: σsys for the 〈S/N〉 of each subset of obser-
vations for each antenna and their corresponding error bars.
Bottom: RMS from recomputed TOAs errors augmented by
σsys and their corresponding error bars.

modeled S/N(σTOA) and then computed 〈S/N〉 for each

of these subset from the σTOA of their observations.

The resulting RMS are plotted in Fig. 6. For a given

value of S/Nmin, the higher frequency sub-band of the

A1 observations have lower RMS than the lower fre-

quency sub-band, which in turn are similar to the A2

observations in one polarization. The inclusion of all

the BW for A1 or both polarizations of A2 show consis-

tently lower RMS. These results can be interpreted as

due to

1. RFIs affecting more the lower frequency sub-band.

2. Effects of differential scintillation.

3. Dispersion effects being better modeled at higher

frequencies.

In conclusion, we found that the main difference in the

timing errors between the antennas can be attributed to
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the difference in BW , followed by nP and an increase of

S/N in the selection of the observations. An increase in

BW seems paramount to improve the timing errors.
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Figure 6. RMS of the timing residuals with the A1 observa-
tions scrunched to BW = 56 MHz and those observed with
A2 reduced to one polarization. We also reproduce the full
A1 and A2 original residuals.

4.4. Timing versus observation length (with split of

observations)

The RMS values improve both with longer observation

times and with a higher number of TOAs (Lorimer &

Kramer 2012; Wang 2015). Here we investigate whether

its possible to improve the overall timing by splitting the

long (> 200 min) observations into multiple subintegra-

tions, producing various TOAs from each observation.

In this way, we obtain additional data points at the ex-

pense of lower timing precision in each of them.

We start with a set of 268 unsplit observations with

tobs > 75 min and σTOA < 1.0 µs. First we calculate

their RMS (dashed line in Fig. 7). Then we systemati-

cally split these observations for different values of the

minimum duration of the subintervals considered, from

10 min to 75 min (the shorter the subinterval, the larger

the number of TOAs obtained). We plot the RMS as

a function of tmin in Fig. 7, and specify the total num-

ber of points obtained from splitting in each case. We

see that the RMS diminishes monotonously as tmin in-

creases, showing that this method is not suitable for

improving the timing of our observations. This is most

likely a sign of the S/N being a major factor affecting

our current timing precision; for tmin < 70 min it is also

possible that jitter affects the TOAs.
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Figure 7. Timing obtained when splitting observations.
The total number of points after splitting is detailed as N .
The horizontal dashed line corresponds to no splitting. The
projected crossing of curves occurs at about 90 minutes.

5. NOISE ANALYSIS

In the following sections, we analyze: i) the white

noise in our data set, which is needed to estimate the

systematic timing errors; ii) the red noise, which is cor-

related in time and has a larger amplitude at low fre-

quencies; iii) the GWB at µHz frequencies, which is pro-

duced from a variety of sources that we cannot iden-

tify individually. For this purpose, we use the software

ENTERPRISE (Enhanced Numerical Toolbox Enabling a

Robust PulsaR Inference SuitE), a pulsar-timing anal-

ysis code which performs noise analysis, gravitational-

wave (GW) searches, and timing-model analysis (Ellis

et al. 2019). ENTERPRISE uses the timing model, previ-

ously fit with Tempo2, as the basis to construct a design

matrix centered around the timing parameters. This

is then used to find the maximum-likelihood fit for the

white- and red-noise parameters.

5.1. White-noise analysis

As described by Alam et al. (2020), the white noise is

modeled using three parameters:

• EQUAD accounts for sources of uncorrelated and

systematic (Gaussian) white noise in addition to

the template-fitting error in the TOA calculations.

• EFAC is a dimensionless constant multiplier to

the TOA uncertainty from template-fitting errors.

It accounts for possible systematics that lead to

underestimated uncertainties in the TOAs.
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• ECORR describes short-timescale noise processes

that have no correlation between observing epoch,

but are completely correlated between TOAs that

were obtained simultaneously at different observ-

ing frequencies. This parameter accounts for wide-

band noise processes such as pulse jitter (Os lowski

et al. 2011; Shannon et al. 2014).

Considering σTOA the template-fitting error of a given

observation, the resulting white-noise model is modelled

by the noise covariance matrix (Lentati et al. 2014)

σ2
νν′,tt′ = δtt′ [δνν′

(
EFAC2 σ2

TOA + EQUAD2
)

+ ECORR2], (7)

where t and ν are the time and frequency of the obser-

vation, respectively.

Given that we have multiple TOAs per day (see

Sec. 2), we need to consider an ECORR contribution.

We then incorporate all these noise components and

timing-model parameters (as specified in Sec. A.1) into a

joint likelihood using ENTERPRISE. We sample the poste-

rior distribution using the sampler PTMCMCSampler (Ellis

& van Haasteren 2017), setting uniform prior distribu-

tions.

Firstly, we investigate the consistency between the

analysis with ENTERPRISE and the independent analy-

sis we presented in Sect. 4.2. With this end, we use

the same set of observations as in the aforementioned

analysis while we fix the value EFAC = 1 and we ex-

clude the ECORR parameter from our analysis, so that

the Gaussian white noise EQUAD becomes equivalent

to the parameter σsys in Eq. 4. We obtain a noto-

rious agreement between the values of EQUAD and

σsys: when removing 3-σ outliers (Sect. 4.2) we obtain

EQUAD ≈ 0.57 µs, fully consistent with the systematic

error of σsys ≈ 0.59 µs that we found in Sect. 4.2 for

A1+A2 and S/N> 50; without removing the outliers,

the results are EQUAD ≈ 0.80 µs and σsys ≈ 0.83 µs,

which again are fully consistent.

Secondly, we repeat the previous analysis now taking

both EFAC and EQUAD as free parameters. By doing

so, we obtain EFAC = 2.48+0.29
−0.30 and log10 EQUAD =

−6.30+0.10
−0.07 (EQUAD ≈ 0.5 µs) as the best-fit param-

eters. The quoted error bars correspond to the 1-

σ (≈ 68%) confidence limits that were obtained us-

ing the lower level function corner.quantile from the

corner.py Python module (Foreman-Mackey 2016) and

taking the 16th and 84th percentiles. We present a cor-

ner plot for these parameters in Fig. 8. In this plot we

also show confidence intervals considering that the rele-

vant 1-σ contour level for a 2D histogram of samples is

1 − e−0.5 ∼ 0.393 (39.3%). Values of EFAC ∼ 1 would

suggest that observing and timing procedures result in

near-true TOA uncertainty estimates; thus, the adjusted

values of EFAC ∼ 2.5 indicate that the TOAs error bars

are considerably underestimated.
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Figure 8. White noise ENTERPRISE timing analysis for
J0437−4715 using the A1+A2 data set.

5.2. Red-noise analysis

The red noise is assumed to be a stationary Gaus-

sian process, which is parameterized with a power-law

model in frequency, such that the spectral power density

is given by (see Hazboun et al. 2020)

P (f) =
A2

rn

12π2

(
f

fref

)Γrn

yr3, (8)

where f is a given Fourier frequency in the power

spectrum, fref is a reference frequency (in this case,

1 yr−1), Arn is the amplitude of the red noise at the

frequency fref , and Γrn is the spectral index. We take

a prior on the red noise amplitude that is uniform on

log10(Arn [yr3/2]) ∈ [−14.5,−12], and a prior on the

red noise index that is uniform on Γrn ∈ [0, 2.6]. The

spectrum is evaluated at 30 linearly-spaced frequencies

f ∈ [1/Tspan, 30/Tspan], where Tspan is the span of the

pulsar’s data set (in this case, 1.1 yr).

In the following analysis we use a total of 319 obser-

vations obtained with A1 and A2 between April 2019

and June 2020 that meet the criteria tobs > 40 min,

S/N> 40, and σTOA < 1 µs. Details of this data set are

summarized in Table 2.



10 Sosa Fiscella et al.

We analyze the data sets of each antenna both in-

dependently and altogether. As described in Sec. 5.1,

ECORR accounts for noise that is correlated between

observations that were obtained simultaneously at dif-

ferent frequencies. Since such observations are not avail-

able for a single antenna, we exclude the ECORR pa-

rameter from the analysis of the individual data sets.

However, we do include this parameter when analyzing

the A1+A2 data set in order to profit from the simul-

taneous observations at different frequencies. A corner

plot for these parameters and their errors is shown in

Fig. 9.

The fitted values to the white- and red-noise parame-

ters for the different data sets are presented in Table 4.

Complementary, we explore the possibility of splitting

long-duration observations into two subintegrations of

tmin = 75 min in order to sample shorter timing frequen-

cies. The adjusted values for this case, also presented in

Table 4, are consistent within 1σ to the ones obtained

without the splitting. We therefore conclude that split-

ting long observations does not improve the timing anal-

ysis, in line with the conclusion from Sect. 4.4.

We obtain EQUAD ≈ 0.5 µs in all cases. The value

of Γrn is less constrained and consistent within 0.5–1.5,

while the amplitude is Arn ≈ 2–7×10−13. The obtained

Arn lies within the expected order of magnitude, whereas

Γrn falls below the expected value by at least a factor two

(Wang 2015), which we interpret is due to the relatively

short baseline of our current data set.

EFAC log10 EQUAD Γrn log10Arn

A1 2.43+0.25
−0.23 −6.3+0.06

−0.06 1.22+0.13
−0.48 −13.88+0.40

−0.44

A2 2.82+0.32
−0.30 −6.34+0.08

−0.09 1.02+0.36
−0.42 −13.51+0.20

−0.26

A1+A2 2.48+0.26
−0.24 −6.32+0.09

−0.07 0.97+0.37
−0.38 −13.63+0.21

−0.27

A1+A2* 2.76+0.24
−0.19 −6.47+0.17

−0.14 0.80+0.39
−0.37 −13.54+0.43

−0.29

Table 4. Adjusted values for the white and red noise pa-
rameters. Values marked with (*) were obtained by splitting
the observations as described in Sec. 4.4.

5.3. Gravitational-wave analysis

We now embark on setting the first bounds to the

GW amplitude from massive binary black holes using

observations from IAR. In doing so, we aim to exploit

the high cadence of these observations.

5.3.1. Gravitational wave analysis: stochastic background

The contribution of the GWB coming from an en-

semble of supermassive black-hole binaries or primordial

fluctuations during the Big Bang is modeled similarly to

that of the red noise (Eq. 8). Any GWB component is

modeled as a single stationary Gaussian process with a

power-law timing-residual spectral density

P (f) =
A2

gwb

12π2

(
f

fref

)Γgwb

yr3. (9)

The analysis is nearly identical to the red noise anal-

ysis described in Sec. 5.2. The prior on the GWB

amplitude is taken uniform on log10(Agwb [yr3/2]) ∈
[−14.4,−11], whereas the prior on the GWB index is

uniform on Γgwb ∈ [0, 3.2]. Moreover, we fix EFAC and

EQUAD to the values adjusted in Sec. 5.2 for each data

set.

In this analysis we also consider both the original

data sets and the data sets obtained by splitting the

observations in subintegrations with tobs ≥ 75 min (see

Sec. 4.4). The best-fitted values to each GWB param-

eter and for each set of observations are presented in

Table 5.

Using the split observations, we get a higher ca-

dence at the cost of worsening the S/N (and therefore

the TOAs precision) of each data point. Our results

show consistent values of Agw ≈ (3 ± 2) × 10−14 and

Γgw ≈ 0.3± 0.2 for all data sets, both with and without

the splitting. In general, splitting the observations leads

to slightly lower values of Γgw and slightly higher values

of Agw, though these differences are not significant as

they are within 1σ of the values obtained without the

splitting.

While the amplitude we find is consistent with ex-

pected bounds for the stochastic background, Γgw falls

short from the expected 13/3 for a stochastic GW back-

ground of SMBH binaries (Siemens et al. 2013), possibly

due to our current relatively short observational baseline

of ≈ 1.1 yr.

In order to account for a background of SMBHBs, we

repeat this analysis including a red-noise model with

a uniform prior on the spectral index Γrn ∈ [0, 7] and

an extra red-noise process with Γgwb set to 4.33. We

also fix all of the white-noise parameters to the values

obtained in Sec. 5.1. In Fig. 10 we show a corner plot

of the fit to the joint A1+A2 data sets. We find values

of Arn ≈ (4 ± 3) × 10−14, consistent with our previous

results, and Γrn ≈ 3.81 ± 2.1. Such uncertainties may

be attributed to the short time span.

5.3.2. Gravitational-wave analysis: continuous source

A single supermassive binary black-hole system pro-

duces “continuous” GWs because the system does not

evolve notably over the few years of a pulsar-timing data

set. We used the Python package Hasasia (Hazboun
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Figure 9. ENTERPRISE timing analysis of red noise for 1.1 yr of observations of J0437−4715 (A1+A2).

Parameter A1 A2 A1+A2

no split split no split split no split split

Γgwb 0.50+0.25
−0.26 0.38+0.20

−0.21 0.12+0.04
−0.04 0.10+0.03

−0.03 0.38+0.28
−0.29 0.28+0.17

−0.18

log10Agwb −13.48+0.25
−0.23 −13.37+0.20

−0.20 −13.33+0.23
−0.21 −13.22+0.18

−0.17 −13.48+0.24
−0.23 −13.41+0.18

−0.18

Table 5. Best-fit values to the GWB parameters.
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Figure 10. ENTERPRISE gravitational wave analysis for
J0437−4715 (A1+A2) including a red-noise process with
Γgwb = 4.33.

et al. 2019) to calculate the single-pulsar sensitivity

curve of our data set of J0437−4715 for detecting a de-

terministic GW source averaged over its initial phase,

inclination, and sky location. The dimensionless char-

acteristic strain is calculated for each sampled frequency

as:

hc(f) =
√
f S(f) (10)

where S is the strain-noise power spectral density for

the pulsar. This is related to the power spectrum of the

induced timing residuals of Eq. 9 by (see Jenet et al.

2006)

P (f) =
1

12π2

1

f3
hc(f)2 (11)

The white- and red-noise parameters that were ad-

justed in Secs. 5.1 and 5.2 using ENTERPRISE are loaded

into the package in order to account for these effects in

the calculations. Since our observations have a time

baseline of Tobs = 1.1 years and a nearly daily ca-

dence, we calculate the curve across a frequency range

between 1/(10 Tobs) ∼ 2.8 × 10−9 Hz and 1/(1 day) ∼
1.2× 10−5 Hz.

The resulting sensitivity curve is shown in Fig. 11.

It is readily seen that there is a loss of sensitivity at

a frequency of (1 yr)−1, caused by fitting the pulsar’s

position, and at a frequency of (PB)−1 ∼ 2 µHz (with

PB the orbital period), caused by fitting the orbital pa-

rameters of the binary system. The additional spikes

seen at frequencies higher than (PB)−1 correspond to

harmonics of the binary orbital frequency.

In addition, the sensitivity at lower frequencies is re-

duced by: i) the fit of a quadratic polynomial to the

TOAs required to model the pulsar spin-down, and ii)

the fitting of ‘jumps’ to connect the timing residuals

obtained with different backends (Yardley et al. 2010).

The frequency dependence (∼ f−3/2) at low frequencies

is evidence of a fit to a quadratic spin-down model for

the pulsar spin frequency. As a result, the minimum of

the sensitivity curve should be attained at a frequency

of 1/Tobs. However, given that the Tobs of our data

set is close to one year, this feature coincides with the

loss of sensitivity at (1 yr)−1. We expect to obtain a

well-defined minimum at ≈ 1/Tobs in a future by accu-

mulating more observations and achieving a significantly

longer time baseline.

For completeness, we tested the significance of the

red-noise contribution by calculating a sensitivity curve

without this component. The curve was essentially in-

sensitive to those changes in the priors. This is expected,

since the injection of red noise should lead to a flat sensi-

tivity curve around the minimum (Hazboun et al. 2019),

though in our case it is coincident with the spike at

(1 yr)−1.

For comparison, we used ENTERPRISE to perform a

fixed-frequency MCMC at four different frequencies. We

obtained a posterior distribution for log10 hgw at each

of these frequencies with a mean value in great agree-

ment with the curve obtained with Hasasia, as shown

in Fig. 11.
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Figure 11. Sensitivity curve for J0437−4715 using 1.1 yr
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These first results on GW sensitivity are encouraging,

though we still need to achieve a sensitivity of at least a

factor ten higher in order to observe even the most favor-

able supermassive black hole binary merger events. For

instance, the six billion solar masses source of 3C 186 at

z ≈ 1 produced a GW of h ∼ 10−14 at the time of ar-

rival to our Galaxy, roughly a million years ago (Lousto

et al. 2017).

6. CONCLUSIONS

We presented the first detailed analysis of the obser-

vational campaign towards the bright MSP J0437−4715

using the two antennas at IAR’s observatory. This data

set comprises over a year of high-cadence (up to daily)

observations with both antennas, A1 and A2.

We quantified the timing precision and noise param-

eters using the current setup for A1 and A2. We also

explored the effect of different reduction parameters of

the raw data. We conclude that:

• The number of phase bins used in the reduction

does not have an impact on the timing precision

as long as nbins ≥ 256.

• The S/N of the individual observations plays a cru-

cial role in determining the timing precision. In

particular, to achieve a timing precision < 1 µs,

observations with S/N > 140 are required, a con-

dition that is currently fulfilled by ∼ 1/3 of the

observations taken with A2 and ∼ 1/2 of the ob-

servations taken with A1.

• Splitting long observations into shorter intervals

does not improve the timing precision, most likely

due to current limitations in the S/N for short ob-

servations.

• A1 slightly outperforms A2, probably due to its

larger bandwidth configuration.

• The systematic errors of the observations are

σsys ≈ 0.5 µs, although this value is likely to be

S/N-limited. The RMS of the data set is ≈ 0.5–

0.6 µs

• The white-noise analysis performed with

ENTERPRISE indicates that the error bars are

typically underestimated by a factor ∼3 when

accounting for EQUAD and EFAC.

• We placed upper limits to the GWB in the

tens nHz to sub-µHz frequency range. Although

the current sensitivity is not sufficient for plac-

ing physically-interesting constraints, the ongo-

ing campaign –together with incoming hardware

upgrades– is likely to significantly improve in the

next 5–10 years (see also Lam & Hazboun 2020).

In particular, observations lasting over 3 h are

promising for exploring GW signals with frequen-

cies above 0.1 µHz by splitting them into hour-

scale subintegrations.

Ongoing and future hardware upgrade of IAR’s anten-

nas, such as installing larger bandwidth boards, promise

to expand IAR’s observational capabilities and improve

its achievable timing precision. Such upgrades would

allow to reduce the systematical errors of the antennas

and to include (sub)daily high-precision timing of other

MSPs of interest, such as PSR J2241−5236.
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A. DETAILS OF THE ANALYSIS

A.1. Reduction of observations

To de-disperse and fold the observations we use the

software PRESTO (Ransom et al. 2003; Ransom 2011). It

has a variety of tools for the reduction of observations.

The processed data is stored in a .pfd file that contains

the pulse profile for different time and frequency bins.

In addition to this profile, PRESTO outputs a .polycos

file that contains the coefficients of a polynomial model-

ing the variation of the pulsar period. These coefficients

allow to determine the period of pulsation in a topocen-

tric reference system and are necessary to compute the

timing residuals.

If the observation is in the file obs.fil and the mask

in the file m.mask, then the command-line used has the

following syntax,

prepfold -nsub 64 -n 1024 -timing

J0437−4715.par -mask m.mask obs.fil (A1)

where the option -timing indicates prepfold to gener-

ate a file .polycos based on the pulsar parameters This

process is currently automatized through local Python

scripts.

A.2. Templates

Considering that A1 and A2 have different configura-

tions (number of polarizations and bandwidth; see Ta-

ble 1), it is possible that slight differences arise in the

integrated profile seen by each antenna. We therefore

study whether the template used has a significant im-

pact in the timing residuals.

To create each template we chose observations with

nbins = 1024 phase bins and nchan = 64 frequency

channels. We select for each antenna data the highest

S/N observation and extract the noise by using the task

psrsmooth in the package psrchive. This choice of tem-

plates seems adequate since J0437−4715 is a very bright

pulsar and selected individual observations produce a

high enough S/N to create a template. We highlight

that the large span of our observations (over 3 hours

in many cases) mitigates the impact of the intrinsic jit-

ter of the pulsar (Liu et al. 2012). The selected tem-

plates for each antenna correspond to the profiles with

nbins = 1024 phase bins in Fig. 12. The relative error

between them is below 5% near the peak, with larger

relative differences towards the wings, but those do not

have major influence in the determination of the TOAs.

In the preliminary timing analysis of PSR J0437−4715

presented in Gancio et al. (2020), we used the same tem-

plate on both antennas to determine TOAs. We show

in our separated analysis of A1 and A2 data that this
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Figure 12. Top: Templates for each antenna for different
values of nbins. Bottom: RMS found for each subset per
nbins, and its corresponding 1-σ error bars.

assumption was valid to the current level accuracy, pro-

ducing an RMS = 0.8 µs residual for A2 observations

with the use of either template. Notwithstanding this a

posteriori verification, we consistently use different tem-

plates for A1 and A2 throughout this work.

A.3. Timing versus number of phase bins

In order to study the effect of the number of phase

bins (nbins) used in the folding of observations on the

timing residuals, we have taken data folded originally

with nbins = 1024, and processed with the routine

bscrunch of the psrchive package for Python, to gen-

erated copies of the observations and their correspond-

ing templates for each antenna, but with values of

nbins = 512, 256, 128, 64 and 32. Through this process of

scrunching we obtained 6 sets of observations for each

antenna only differing by their nbins. Fig. 12 shows the

effect of the nbins on the templates for each antenna.

While for nbins = 32 we lose temporal resolution, the

differences beyond nbins ≥ 256 are almost negligible to

our precision.

Next we compute the timing residuals for each nbins

subset. Interestingly, only for nbins ≤ 64 the timing er-

rors are too large; for nbins ≥ 128 the derived TOAs are

very consistent, being the size of the error bar the main

difference (with smaller error bars obtained for larger

nbins). The RMS of the residuals for each subset after

adjusting σsys as a function of nbins is shown in Fig. 12.
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The RMS decreases with increasing nbins significantly

for 64 to 256 bins, showing that we cannot attain good

timing for nbins ≤ 64 and need at least 256 bins to obtain

a precision higher than 1µs for a pulsar like J0437−4715.

This corresponds to a time interval much smaller than

the full width at half-maximum of the pulse (FWHM),

that is, 0.3 µs at 1400 MHz.

A.4. Timing vs S/N

Here we present additional figures that support the

hypothesis that our timing studies are limited due to

the S/N of the observations. This effect has a larger

impact for A2, as can be seen in Fig. 13.
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et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
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Figure 13. Residuals of each subset of observations with A1 (left) and A2 (right) grouped in different data sets according to
their minimum S/N (see legends).

Os lowski, S., van Straten, W., Bailes, M., Jameson, A., &

Hobbs, G. 2014, MNRAS, 441, 3148,

doi: 10.1093/mnras/stu804

Perera, B. B. P., DeCesar, M. E., Demorest, P. B., et al.

2019, MNRAS, 490, 4666, doi: 10.1093/mnras/stz2857

Ransom, S. 2011, PRESTO: PulsaR Exploration and

Search TOolkit. http://ascl.net/1107.017

Ransom, S. M., Cordes, J. M., & Eikenberry, S. S. 2003,

ApJ, 589, 911, doi: 10.1086/374806

Reardon, D. J. 2018, PhD thesis, Monash Centre for

Astrophysics (MoCA), School of Physics and Astronomy,

Monash University, Victoria 3800, Australia

Shannon, R. M., Os lowski, S., Dai, S., et al. 2014, MNRAS,

443, 1463, doi: 10.1093/mnras/stu1213

Siemens, X., Ellis, J., Jenet, F., & Romano, J. D. 2013,

Class. Quant. Grav., 30, 224015,

doi: 10.1088/0264-9381/30/22/224015

Smirnova, T. V., Gwinn, C. R., & Shishov, V. I. 2006,

A&A, 453, 601, doi: 10.1051/0004-6361:20054281

Taylor, J. H. 1992, Philosophical Transactions of the Royal

Society of London Series A, 341, 117,

doi: 10.1098/rsta.1992.0088

Vallisneri, M. 2020, libstempo: Python wrapper for

Tempo2. http://ascl.net/2002.017

van Straten, W., Bailes, M., Britton, M., et al. 2001,

Nature, 412, 158.

https://arxiv.org/abs/astro-ph/0108254

Vivekanand, M., Ables, J. G., & McConnell, D. 1998, ApJ,

501, 823, doi: 10.1086/305847

Wang, Y. 2015, in Journal of Physics Conference Series,

Vol. 610, Journal of Physics Conference Series, 012019,

doi: 10.1088/1742-6596/610/1/012019

Yardley, D. R. B., Hobbs, G. B., Jenet, F. A., et al. 2010,

MNRAS, 407, 669, doi: 10.1111/j.1365-2966.2010.16949.x

http://doi.org/10.1093/mnras/stu804
http://doi.org/10.1093/mnras/stz2857
http://ascl.net/1107.017
http://doi.org/10.1086/374806
http://doi.org/10.1093/mnras/stu1213
http://doi.org/10.1088/0264-9381/30/22/224015
http://doi.org/10.1051/0004-6361:20054281
http://doi.org/10.1098/rsta.1992.0088
http://ascl.net/2002.017
https://arxiv.org/abs/astro-ph/0108254
http://doi.org/10.1086/305847
http://doi.org/10.1088/1742-6596/610/1/012019
http://doi.org/10.1111/j.1365-2966.2010.16949.x

	1 Introduction
	2 Observations 
	3 Analysis of the observations 
	3.1 Signal-to-noise ratio of the observations
	3.2 Scintillations

	4 Timing analysis 
	4.1 Timing Residuals
	4.2 Timing versus S/N
	4.3 Timing versus bandwidth
	4.4 Timing versus observation length (with split of observations) 

	5 Noise analysis 
	5.1 White-noise analysis 
	5.2 Red-noise analysis 
	5.3 Gravitational-wave analysis 
	5.3.1 Gravitational wave analysis: stochastic background 
	5.3.2 Gravitational-wave analysis: continuous source 


	6 Conclusions
	A Details of the analysis
	A.1 Reduction of observations
	A.2 Templates
	A.3 Timing versus number of phase bins  
	A.4 Timing vs S/N


