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During the acquisition of electroencephalographic (EEG) signals, data may be missing or corrupted by noise and artifacts. To
reconstruct the incomplete data, EEG signals are firstly converted into a three-order tensor (multi-dimensional data) of shape
time × channel × trial. Then, the missing data can be efficiently recovered by applying a tensor completion method (TCM).
However, there is not a unique way to organize channels and trials in a tensor, and different numbers of channels are available
depending on the EEG setting used, which may affect the quality of the tensor completion results. The main goal of this paper
is to evaluate the robustness of EEG completion methods with several designed parameters such as the ordering of channels and
trials, the number of channels, and the amount of missing data. In this work, the results of completing missing data by several
TCMs were compared. To emulate different scenarios of missing data, three different patterns of missing data were designed.
Firstly, the amount of missing data on completion effects was analyzed, including the time lengths of missing data and the number
of channels or trials affected by missing data. Secondly, the numerical stability of the completion methods was analyzed by
shuffling the indices along channels or trials in the EEG data tensor. Finally, the way that the number of electrodes of EEG tensors
influences completion effects was assessed by changing the number of channels. Among all the applied TCMs, the simultaneous
tensor decomposition and completion (STDC) method achieves the best performance in providing stable results when the amount
of missing data or the electrode number of EEG tensors is changed. In other words, STDC proves to be an excellent choice
of TCM, since permutations of trials or channels have almost no influence on the complete results. The STDC method can
efficiently complete the missing EEG signals. The designed simulations can be regarded as a procedure to validate whether or not
a completion method is useful enough to complete EEG signals.
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1 Introduction

An electroencephalogram (EEG) can be used to record the
electrical activity from a person’s brain [1, 2]. With the anal-
ysis of EEG signals, certain brain activities such as motor
imagery and visual evoked potentials can be decoded from
the brain [3–6]. However, EEG signals may be missing or
corrupted due to a temporary disconnection of electrodes
during the acquisition process, resulting in the loss of in-
formation and seriously affecting the subsequent analysis of
EEG data [7]. For example, event-related desynchroniza-
tion/synchronization (ERD/ERS) is one of the brain activi-
ties concerning the decrease or increase of power in the mo-
tor cortex [8, 9]. The ERD can be detected as the changes of
variances of EEG signals in alpha and beta rhythms [10]. The
ERD may exactly occur in the acquisition process of miss-
ing data, which has an impact on the accuracy of ERD de-
tection. Therefore, completing missing data and minimizing
errors between original EEG signals and completed EEG sig-
nals constitute a crucial step in EEG analysis.

Interpolation is a basic method used to complete one-
dimensional or multi-dimensional missing signals in a form
of time series [11]. However, because the information used
for interpolation is local, this method may fall into a local
trap of complex signals. Gunnarsdottir et al. [12] proposed
a method to complete the missing EEG signals under the as-
sumption that some electrodes are missing. The EEG data
were represented as sequences of linear time-variant models.
Since EEG signals in some electrodes are entirely unknown,
they proposed an estimated network model to complete miss-
ing data with the simultaneously acquired two-dimensional
EEG signals. Tensor completion methods (TCMs), on the
other hand, complete the missing data by using global and
multi-dimensional information relying on tensor factorization
models [13]. Instead of copying from adjacent signals, TCMs
impose low-rankness of the tensors involved in the factoriza-
tion. TCMs utilize the information from not only the one-
dimensional EEG signals or simultaneously acquired two-
dimensional EEG signals, but also EEG signals from other
trials which are multi-dimensional. In the analysis of EEG
data, TCMs can also incorporate the multiway nature of data,
similar to the applications of image processing and social net-
work data [14–19]. Solé-Casals et al. [7] proposed to recon-
struct EEG signals with missing data using TCMs in a brain
computer interface (BCI) context. Compared to the simple
interpolation methods, the TCMs can minimize the errors be-
tween the original and completed EEG signals, which can
also improve the performance of EEG signal analysis.

Despite the successful completion of missing data with
TCMs on EEG signals, there are still some problems with the

procedure. It is important to note that two main differences
exist between the completion on EEG signals and images.
The differences are mainly reflected during the transforma-
tion from EEG signals or images to tensors. One is related
to the permutations of channels in EEG signals. The height
and width of images correspond to the channel and time of
EEG signals in a tensor. In images, the sequences of pixels
along the height or width are fixed. However, in EEG sig-
nals, the sequences of channels can be randomly permuted
without influencing the analysis results. The permutation of
channel sequences may have an influence on the numerical
stability when applying the completion methods. The other
difference concerns the number of channels in EEG signals.
In images, the number of pixels along the height or width is
greater than ten, depending on the camera settings. In EEG
signals, the number of EEG channels ranges from one to one
hundred without a lower limit. Multiple pixels ensure that
TCMs can find a valid relationship within image tensors. In
other words, TCMs may fail on EEG signals when the num-
ber of EEG channels is smaller than a certain threshold.

These two differences lead to the completion problems,
that is, not all TCMs can efficiently complete the missing
EEG signals. Consequently, it is necessary to find out which
TCM is the most appropriate for the completion of missing
EEG signals. In order to minimize influences induced by the
permutations of EEG channels/trials or the number of EEG
channels, different available TCMs are compared when used
to complete the missing EEG signals. We design simulations
to emulate different practical scenarios of missing data in
EEG signals and compare the ability of each TCM to recover
the missing data. The simulations of missing data focus on
the following three problems: (1) how the amount of miss-
ing data in EEG signals influences the completion effects;
(2) the influence of EEG tensor ordering on the numerical
stability; (3) the minimal number of EEG channels necessary
to achieve acceptable completion results.

Thus, to solve these three problems, three types of exper-
iments are proposed to measure and evaluate the completion
effects of TCMs on EEG signals. The three experiments are
(1) the amount of missing data; (2) the initial condition of
the EEG signals (with different tensor permutations); (3) the
number of channels of the EEG signals, separately. The com-
pletion effects of the prevalent TCMs and those of a basic in-
terpolation method are deeply analyzed through simulations.

In the following sections, we first introduce the used EEG
dataset, how we design the experiments, basic concepts on
TCMs, and how to evaluate the completion effects in Sect. 2.
Second, we analyze the results of the simulations in Sect. 3.
We then discuss the assumptions of the proposed simulations
in Sect. 4. Finally, Sect. 5 is a summary of this work.
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2 Materials and methods

EEG completion is the task related to estimating missing
values in EEG signals through completion methods. In
EEG completion, the first step is to tensorize the original
EEG signals into a 3-dimensional EEG tensor. The initial
EEG signals are given as multi-channel time series (a two-
dimensional dataset). In most EEG experiments, subjects are
expected to execute several repeated actions, such as imagin-
ing the movement of the hand or the extension/flexion of the
elbow. EEG signals are used to identify the pattern distribu-
tion of certain brain activities. In EEG experiments, a trial
comprises of the signals recorded from the start to the end of
an action. EEG signals can be arranged as a 3-dimensional
tensor of shape time × channel × trial with more than one
trial. We term the missing data in a tensor as missing entries.
To facilitate the description of the simulations of missing en-
tries, the notations that are used the most often throughout
this work are described in Table 1. In the EEG analysis, we
can take advantage of the 3-D EEG tensor to complete miss-
ing or corrupted entries with TCMs.

To evaluate the TCMs, Solé-Casals et al. [7] applied a
simulation of missing entries in the EEG data. Specifically,
we have a 3-dimensional tensor X containing intact signals
(full EEG data tensor). Then, missing entries are randomly
selected in X. This random selection is defined by a mask
O. Each entry in the mask O is either 0 or 1. Information
in entries with 1 is known or intact; on the other hand, in-
formation in entries with 0 is deleted or contaminated. The
incomplete tensor isY = X∗O, where ∗ denotes the elemen-
twise product. TCMs are then applied on Y to recover the
information of the missing entries. Through the process, the
recovered/completed tensor X̂ can be obtained.

In the following subsections, the used dataset is first intro-
duced. Then, the method to simulate incomplete EEG data
tensors is described. Finally, the related TCMs are introduced
and a measurement of the reconstruction quality is properly
defined.

2.1 Dataset description

In most cases, EEG signals are acquired to analyze the activi-
ties of the brain. These are primarily associated with changes
of power in the electrical activity in certain areas of the brain.
In this paper, the associated brain area is the motor cortex. A
dataset with 15 subjects was used, obtained from ref. [20]1).
This dataset contains both EEG signals and simultaneously
acquired hand positions. The channels of the used data in-
clude F3, Fz, F4, FCz, C1, Cz, C2, CPz, P3, Pz, and P4

(Figure 1). EEG signals are first downsampled to Fs=256 Hz.

Table 1 Description of notations used in this work

Notation Description

Fs Fs= 256 Hz is the sample rate/frequency of EEG signals

X Tensors containing full EEG signals

O Masks indicating positions of the missing entries

Y Tensors containing missing entries, equaling to X ∗ O
X̂ Completed tensors

Nchannel Number of channels of EEG signals

Ntime Number of sample points of EEG signals

Ntrial Number of trials of EEG signals

NmTL Time length of missing entries with unit of second (s)

NmCT Number of time series containing missing entries

Cz C2

F3 F4

P3 P4

Fz

Pz

FCz

CPz

C1

Figure 1 Channel locations of EEG signals. The distribution of electrodes
is in accordance with the 10–20 international system of electrode placement,
which is an internationally recognized method to describe the location of
scalp electrodes.

Here Fs denotes the sample frequency. The hand positions
were recorded using an exoskeleton sensor. The subjects
were asked to implement seven different actions, which in-
cluded six movement states and the rest state. In our exper-
iments, two movement states were adopted (elbow flexion,
elbow extension) along with the rest state (resting). For the
movement states, the movement onset is the time when the
subjects began to implement their movements, which can be
located from the hand positions. The brain remains in a rest
state prior to the movement onset. The motor cortex becomes
active around the movement onset. During the data acquisi-
tion, the trial started after a beep sound. Two seconds (2 s)
later, a cue was shown indicating that the action should be
executed. Subjects were then supposed to execute the corre-
sponding action.

1) Upper limb movement decoding from EEG (001-2017), 15 subjects. http://bnci-horizon-2020.eu/database/data-sets

http://bnci-horizon-2020.eu/database/data-sets
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The EEG signals in EEG tensors were extracted from sig-
nals around the movement onset. Specifically, a 1-order
Savitzky-Golay finite impulse response filter was first used to
smooth the hand position acquired with an exoskeleton sen-
sor. The frame length of the filter was 31. Note that a higher
or lower frame length will lead to inaccurate detection of the
movement onset. A higher frame will induce a latency on the
located movement onsets and a lower frame cannot ensure
the smoothness of the filtered hand positions. The movement
onsets were located from the filtered smooth hand positions.
EEG signals 2 s before and 1 s after the movement onset were
cut off and were therefore selected to generate the EEG ten-
sors. Figure 2 illustrates how the EEG tensors are generated
from the original EEG signals. If subjects are supposed to
stay at rest, the obtained signals start at 0.5 s post-cue. By
concatenating trials from the same subject, EEG tensors for
each subject can be acquired. Each EEG tensor corresponds
to a subject’s certain executed action. 15 subjects repeat each
action 60 times, so the number of trials was 60 for each sub-
ject. Due to disruptions occurring in some trials when lo-
cating the movement onset, 50 trials were randomly selected
without disruptions for each action. Therefore, the size of the
EEG tensor X is Nchannel = 11, Ntime = 3 s × 256 Hz = 768,
Ntrial = 50.

In the processing of the EEG dataset above, the data be-
longing to the movement execution was adopted. In move-
ment execution, the movement onset can be captured and lo-
cated with the exoskeleton sensor. The localization of the
movement onset has two advantages for the implementation

and evaluation of the simulations:
(1) The EEG tensors can cover active brain activities be-

cause the motor cortex becomes active around the movement
onset;

(2) The premovement encoding method can be directly ap-
plied to the EEG tensors, which can classify the EEG data in
the movement state and the rest state.

In Sect. 2.4.2, further details about the premovement en-
coding method are given.

2.2 Simulation of missing entries in EEG data tensors

In most TCM-related studies, a simulation of missing entries
is frequently applied because it is necessary to compare the
information present in the completed tensors against the in-
formation in the original tensors [7]. In Figure 3, a procedure
of the simulation of an incomplete EEG data tensor and the
procedure for completing its missing entries is provided.

The first step in a simulation of an incomplete EEG data
tensor is to select the missing entries (Figure 3). By default, it
is assumed that the missing entries in the time series are con-
tinuous. The selection of missing entries comprises of two
steps (1) select the time series that contains the missing en-
tries; and (2) decide the time length of the missing entries as
well as randomly choose their start time.

Selection of time series. The missing signals are char-
acteristic in which they may occur at any channel or trial
during the acquisition of EEG signals. In order to simu-
late this characteristic, we define a two-dimensional matrix

Cut 

off  

Savitzky-golay 

FIR smooth filter  

Hand 

Elbow 

flexion  

Elbow 

extension 

Executed actions 

Normalization 

Hand 
position 

EEG signals 
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Channel 
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Human 

brain 

An EEG tensor 

Figure 2 (Color online) Procedure of generating an EEG tensor from the original dataset. After a beep, subjects were asked to prepare the movement. Two
seconds (2 s) later, a cue indicating the action to be performed was given. Subjects immediately executed the action after the cue. EEG signals and hand
position were simultaneously acquired. Movement onsets were decided using the hand positions. EEG signals 2 s before and 1 s after movement onset were
cut-off and were thus selected to generate the EEG tensors.
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Figure 3 (Color online) The simulation and completion procedures for missing entries in EEG tensors. The first step of the simulation is to select the entries
with missing information. Then, TCMs are applied to complete the missing entries in the EEG tensor. The Tucker model is one of the basic models used in
STDC. Details about the Tucker decomposition are given in eq. (6).

M ∈ RNchannel×Ntrial and initialize M with M j,k = 1, where
j = 1, . . . ,Nchannel, k = 1, . . . ,Ntrial. M j,k = 1 means that
the time series at the jth channel and kth trial does not con-
tain any missing entries. In contrast, M j,k = 0 means that the
time series at the jth channel and kth trial contains missing
entries. The values in M have the following definition:

M j,k =

1, The time series does not have missing entries,

0, The time series has missing entries.

(1)

We denote the number of ‘0’s in M as NmCT, indicating how
many time series contain missing entries.

Decision of missing entries’ positions. We suppose that
a time series at the jth channel and kth trial has missing en-
tries (M j,k = 0). The time length of the missing entries is
denoted as NmTL. A random start time trandom is decided. The
information between trandom and trandom + NmTL is set to be
discarded during this time series. For other time series that
contain missing entries, trandom are totally different because
the values of trandom are all randomly selected.

With the two steps, the mask O in the simulation can be
expressed as

O =
1, Information in this entry is not missing,

0, Information in this entry is missing.
(2)

In comparison to the original EEG tensor X, information
in the missing entries of Y is lost and set to zero. The ele-
mentwise relationship between X,Y, and O can be written as
follows:

yi jk = xi jkoi jk. (3)

Previous studies have proven that TCMs are able to re-
cover missing entries in EEG tensor Y [7]. In this work, in
order to measure whether or not a TCM is suitable for EEG
completion, three different simulations are designed focusing
on (1) the number of missing entries; (2) the permutation of
channels/trials of EEG tensors; and (3) the number of chan-
nels of EEG tensors.

2.2.1 Simulation I: Number of missing entries

The number of missing entries can be described using two
values: NmCT and NmTL. In order to observe how the com-
pletion effects change as the number of missing entries in-
creases, two methods were carried out to increase the number
of missing entries:

(1) Set NmTL to a constant and increase NmCT;
(2) Set NmCT to a constant and increase NmTL.
Therefore, there are two cases in simulation I: increasing

NmCT and increasing NmTL.
(1) Increasing NmCT: Set NmTL = 0.25 and 0.5 s separately;

increase NmCT from 5 to 100 with step size 5.
(2) Increasing NmTL: Set NmCT = 10 and 20 separately;

increase NmTL from 0.125 to 2 s with step size 0.125 s.

2.2.2 Simulation II: Numerical stability of completion meth-
ods

In this simulation, the stability of the completion methods is
explored when the initial condition changes. The permutation
of the EEG tensors is changed while the rank and the content
of the tensors remain unchanged. This simulation is applied
to the EEG tensor Y with NmCT = 5 and NmTL = 0.25 s. The
permutation of channels of Y is randomly shuffled, thus ob-
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taining the shuffled EEG tensor Y′channel. X̂, X̂′channel are the
completed EEG tensor for Y and Y′channel, separately. Sub-
sequently, the permutation of X̂′channel to X̂channel is recovered,
i.e., X̂channel has the same channel sequence and trial sequence
with X̂.

In addition to the permutation of channels, we note that
the permutation of trials in EEG tensors also shows a random
sequence. Consequently, the permutation of trials in EEG
tensors is also compared. Similar to the case with channels,
the related variables are Y′trial, X̂′trial, and X̂trial.

2.2.3 Simulation III: Number of channels of EEG tensors

This simulation aims to display how Nchannel influences the
completion effects of TCMs. We need to change Nchannel

from 1 to 11 (Nchannel is fixed to 11 in simulations I and
II). Since the EEG tensor must contain missing entries when
Nchannel = 1, there is only one channel containing missing
entries. We set NmCT = 1 and NmTL = 0.25 s. For conve-
nience, we denote the channel which contains missing entries
as Channel 1. When Nchannel increases from 1 to 11, other
channels are appended after Channel 1 referred to as Channel
2, . . ., Channel 11.

2.3 Tensor completion methods

Tensor completion methods play a critical role in recover-
ing information from missing entries. Specifically, TCMs
utilize the inner relationship within the tensors to complete
the missing entries instead of directly copying information
from adjacent entries. The inner relationship of the tensors
used in most TCMs is the rank of the tensors. Tucker de-
composition and canonical polyadic (CP) decomposition are
two basic tensor decomposition methods [21, 22]. In the fol-
lowing statement on TCM-related concepts, X is the original
tensor without missing entries; Y is the tensor with miss-
ing entries; Y = X ∗ O; finally, X̂ is the completed tensor
(X,Y, X̂ ∈ RN1×N2×N3 , where Nn is the length of the ith di-
mension, i = 1, 2, 3).

CP decomposition. In CP decomposition [13], the tensor
Y can be factorized as

Y ≈ ⟦A, B,C⟧ =
R∑

r=1

ar ◦ br ◦ cr, (4)

where R is a positive integer; ar ∈ RN1 , br ∈ RN2 , and cr ∈ RN3

where r = 1, 2, . . . ,R; finally, ◦ denotes the outer product of
vectors. In an elementwise form, CP decomposition can be
written as

yi1i2i3 ≈
R∑

r=1

ai1rbi2rci3r. (5)

Tucker decomposition. In Tucker decomposition [13],
the tensor Y can be factorized as

Y ≈ G ×1 A ×2 B ×3 C = ⟦G; A, B,C⟧, (6)

where G is the core tensor; G ∈ RR1×R2×R3 ; A, B, and C are
the A ∈ RN1×R1 , B ∈ RN2×R2 , and C ∈ RN3×R3 , respectively.
R1, R2, and R3 are the ranks of matrices A, B, and C with
limitation rank(Y) ≤ R1 ≤ N1, rank(Y) ≤ R2 ≤ N2, and
rank(Y) ≤ R3 ≤ N3, respectively; and ×n is the n-mode prod-
uct. For example, the 1-mode product Y = G ×1 A is defined
as

yi1,r2,r3 =

R1∑
r1=1

gr1r2r3 ai1r1 , i1 = 1, 2, . . . ,N1. (7)

In this work, four TCMs are compared: CP-weighted op-
timization (WOPT), Bayesian CP factorization (BCPF), si-
multaneous tensor decomposition, and completion (STDC),
and high accuracy low-rank tensor completion (HaLR) [21,
23–25]. These four TCMs are based on rank optimization.
WOPT and BCPF are two TCMs based on CP decomposi-
tion while STDC is based on Tucker decomposition. The in-
terpolation method is also mentioned as a baseline. The main
concepts of the four TCMs and the interpolation method are
now briefly introduced.

2.3.1 WOPT

This method solves the weighted minimum problem by us-
ing a first-order optimization approach [21]. In order to mini-
mize the approximation error in eqs. (4) and (5), the objective
function of weighted CP decomposition is the following error
function:

fO(A, B,C) =
1
2
∥(Y − ⟦A, B,C⟧)∥2O

=
1
2
∥(Y ∗ O − ⟦A, B,C⟧ ∗ O)∥2

=
1
2
∥(Y −Z)∥2 , (8)

whereY can be inferred from eq. (3): Y = X∗O = X∗O∗O =
Y ∗ O. We define Z as Z = ⟦A, B,C⟧ ∗ O. By minimiz-
ing the objective function, WOPT finds the completed tensor
X̂ = ⟦A, B,C⟧ ∗ (1 − O) + Y ∗ O. Tensor gradient deviation
with weight is used to minimize the objective function. For
example, the gradient deviation of A is

∂ fO
∂A
= (Z(1) − Y(1))A−1, (9)

where A−1 = B ⊙ C, ⊙ denotes the Khatri-Rao product and
Z(1) is the 1-mode unfolding ofZ.
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2.3.2 BCPF

BCPF is also an extension of the CP method [23]. In CP
decomposition, the tensor rank R is a hyper-parameter that
needs to be specified manually. The Bayesian method is ap-
plied to CP to resolve the rank determination problem. This
method can deal with incomplete and noisy data with a fully
Bayesian inference framework and a hierarchical sparsity in-
ducing prior.

2.3.3 STDC

STDC is a TCM based on Tucker decomposition [24, 25].
The optimized tensor X̂ can be decomposed into four compo-
nents through eq. (6):

X̂ = ⟦G; A, B,C⟧ s.t. Y = X̂ ∗ O. (10)

In order to find X̂, there are two middle steps present in
STDC. The two steps alternately optimize matrices A, B, C,
and the core tensor G. The maximum a posteriori (MAP)
strategy is used to find X̂, G, A, B, and C. The strategy mini-
mizes the objective function:

fO(G, A, B,C) =α1 ∥A∥∗ + α2 ∥B∥∗ + α3 ∥C∥∗
+ βtr((A ⊗ B ⊗C)L(A ⊗ B ⊗C)T)

+ γ ∥G∥2F , (11)

where ∥A∥∗ denotes the nuclear norm and is the sum of all
of the singular values; ⊗ denotes the Kronecker product; and
L ∈ RN1N2N3×N1N2N3 is the so-called Laplacian matrix. The
augmented Lagrange multiplier method is used to update the
parameters for several iterations. Finally, the augmented La-
grange multiplier method converges and the sub-manifold A,
B, C, and the core tensor G are obtained. The optimized ten-
sor X̂ can be constructed using eq. (10).

2.3.4 HaLR

HaLR is developed to estimate the missing values in the low-
rank tensor completion problems [25]. For low-rank matrix
completions, it can optimize the tensor with missing entries
by minimizing the rank. Because the rank of a tensor is non-
convex, and computing the rank of tensors with more than
two modes constitutes an NP-hard problem, the nuclear norm
can be used to approximate the rank of a matrix, which is the
tightest convex envelope of the rank. HaLR aims at minimiz-
ing the objective function:

fO(X̂,A,B,C) = α1
∥∥∥A(1)

∥∥∥∗ + α2
∥∥∥B(2)

∥∥∥∗ + α3
∥∥∥C(3)
∥∥∥∗ ,

s.t. X̂ ∗ O = X, X̂ = A, X̂ = B, X̂ = C, α1 + α2 + α3 = 1.
(12)

This function has multiple dependent terms so that it can-
not converge efficiently. HaLR overcomes this issue with
the alternating direction method of the multipliers algorithm,
which solves optimization problems with non-smooth terms.

2.3.5 Interpolation

Interpolation is the basic completion method used for com-
pleting missing EEG signals. In this paper, this method
is used as a baseline. For simplicity, we adopt a sim-
ple one-dimension linear interpolation method in the one-
dimensional time series. The linear interpolation completes
the missing entry with a line connecting two adjacent known
points. If the missing entry starts from the beginning of the
time series or ends at the ending of the time series (which
only have one known adjacent point), the missing entries are
completed with the value of the adjacent point.

2.4 Performance measurement

2.4.1 Negative logarithm normalized root mean square er-
ror

The normalized root mean square error (NRMSE) can be re-
garded as the reciprocal of the simplified signal to noise ra-
tio (SNR). It is used as the criterion to assess the difference
between the completed EEG tensor X̂ and the original EEG
tensor X.

The general NRMSE can be obtained by dividing the root
mean square error by the difference between the maximum
and the minimum value of the signals. The maximum and
minimum of these time series in EEG tensors may differ sig-
nificantly. Therefore, the NRMSE is computed as follows:
firstly, the NRMSE of each channel is computed and then
the mean of the NRMSE of all channels is calculated. These
steps can be expressed as follows:

NRMSE jk =

√∑Ntime
i=1 (X̂i jk − Xi jk)2/(NmTL × Fs)

max(X: jk) −min(X: jk)
, (13)

NRMSE⟨X,X̂⟩ =

∑Nchannel
j=1

∑Ntrial
k=1 NRMSE jk

NmCT
. (14)

The − log10 function is applied on NRMSE⟨X,X̂⟩, thereby ob-
taining the negative logarithm normalized root mean square
error (LNRMSE):

LNRMSE⟨X,X̂⟩ = − log10(NRMSE⟨X,X̂⟩). (15)

In simulation I, the differences can be easily measured
using eqs. (13) and (14). The factors NmTL and NmCT

in these equations can avoid the influences induced by the
change of NmCT and NmTL, even though these vary as the
number of missing entries changes. In simulation II, we
first need to calculate LNRMSE⟨X,X̂⟩, LNRMSE⟨X,X̂channel⟩, and
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LNRMSE⟨X,X̂trial⟩. The differences between two permutations
can be measured using

δLNRMSEchannel

= − log10

(
abs
(
NRMSE⟨X,X̂channel⟩ − NRMSE⟨X,X̂⟩

))
, (16)

or

δLNRMSEtrial

= − log10

(
abs
(
NRMSE⟨X,X̂trial⟩ − NRMSE⟨X,X̂⟩

))
. (17)

In simulation III, NRMSE is based on the differences in the
missing entries, so the influences induced by the change of
Nchannel can also be avoided. Therefore, LNRMSE can be
used as the criterion to measure the differences between the
original EEG tensor X and the completed EEG tensor X̂.

Since there are 15 subjects in the dataset used, the aver-
age LNRMSE is calculated across subjects when the com-
parison results are measured. The calculation of the average
LNRMSE can avoid the uniqueness for a single subject.

2.4.2 Classification on movement-related cortical potential

The EEG data is usually used for classification tasks thus
the classification performance of different tensor completion
methods is also investigated in ref. [15]. From the origi-
nal dataset, three EEG tensors are extracted for each sub-
ject (Sect. 2.1). The three tensors refer to three actions:
elbow flexion, elbow extension, and resting. In tensors re-
lated to movement states (elbow flexion or elbow extension),
the movement onsets are exactly located at the 2 s. An ap-
plication based on the movement-related cortical potential
(MRCP) can be implemented on these EEG tensors. This ap-
plication aims to decode and classify premovement patterns
from low frequency bands of EEG signals. The method of
task-related component analysis (TRCA) + canonical corre-
lation patterns (CCPs) can be applied to classify the move-
ment states (elbow flexion or elbow extension) and rest state
(resting). More specifically, the classification has four steps:

(1) Filter EEG signals with a bandpass filter between 0.05
and 4 Hz;

(2) Cast the bandpassed signals into the spatial filter,
TRCA;

(3) Extract CCPs from the EEG signals filtered with
TRCA;

(4) Classify the CCPs with a linear discriminated analysis
(LDA) classifier.

TRCA designs a spatial filter that extracts task-related
components by maximizing the reproducibility during the
task [26]. To simplify the description of TRCA, we de-
note the multichannel EEG tensors X as Xk(t) ∈ RNchannel×Ntrial ,

t = 1, 2, . . . ,Ntime. The symbol k represents the trials be-
longing to the movement states (k = 1) or the rest state
(k = 2). Xk(t) consists of two components: (1) task-related
signal s(t) ∈ R and (2) task-unrelated noise n(t) ∈ R. The re-
lationship between X(t), s(t), and n(t) can be described with
a linear model:

Xk
i j(t) = ak

1,i, js(t) + ak
2,i, jn(t),

i = 1, . . . ,Nchannel, j = 1, . . . ,Ntrial. (18)

If we define the linear sum of EEG signals X(t) as y(t) ∈
RNtrial , then

yk
j(t) =

Nchannel∑
i=1

wk
i Xk

i j(t) =
Nchannel∑

i=1

(
wk

i ak
1,i, js(t) + wk

i ak
2,i, jn(t)

)
,

j = 1, . . . ,Ntrial. (19)

TRCA aims to recover the task-related signal s(t) from y(t).
The ideal solution to the equation is

∑Nchannel
i=1 wk

i ak
1,i, j = 1 and∑Nchannel

i=1 wk
i ak

2,i, j = 0. The solution can be approached by max-
imizing the intertrial covariance. The covariance Ck

j1, j2
be-

tween the j1th trial and the j2th trial can be computed by

Ck
j1, j2 = Cov

(
yk

j1 (t), yk
j2 (t)
)

=

Nchannel∑
i1,i2

wk
i1 wk

i2 Cov
(
Xk

i1 j1 (t), Xk
i2 j2 (t)

)
. (20)

For all combinations of the trials, the sums of covariances are
calculated:

Ntrial∑
j1, j2=1
j1, j2

Ck
j1, j2 =

Ntrial∑
j1, j2=1
j1, j2

Cov
(
yk

j1 (t), yk
j2 (t)
)

=

Ntrial∑
j1, j2=1
j1, j2

Nchannel∑
i1,i2=1

wk
i1 wk

i2 Cov
(
Xk

i1 j1 (t), Xk
i2 j2 (t)

)
= wTS kw. (21)

To obtain a finite solution, the variance of yk
j(t) is constrained

to 1:
Ntrial∑

j1, j2=1

Ck
j1, j2 =

Ntrial∑
j1, j2=1

Cov
(
yk

j1 (t), yk
j2 (t)
)

=

Ntrial∑
j1, j2=1

Nchannel∑
i1,i2=1

wk
i1 wk

i2 Cov
(
Xk

i1 j1 (t), Xk
i2 j2 (t)

)
= wTQkw = 1. (22)

The constrained spatial filter can be obtained by calculating
the solution of maximizing J = (wTS kw)(wTQkw)−1. After
solving the generalized eigenvalue problem, the eigenvectors
are sorted and arranged in the descending order of eigenval-
ues. Half of the eigenvectors whose corresponding eigenval-
ues are the maximum ones are selected as the eigenvectors
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used in the spatial filter. The eigenvectors from two classes
are then concatenated into the TRCA spatial filter W.

After being filtered with TRCA, three CCPs were calcu-
lated for each class from the filtered EEG signals. Given the
filtered training data Xk ∈ RNtime×Nchannel×Ntrial , k = 1, 2, we can
obtain the templates Xk =

∑Ntrial
j=1 Xk

:: j/Ntrial ∈ RNtime×Nchannel for
each class. The EEG signal of the trial from which we aim to
extract features is X ∈ RNtime×Nchannel .

(1) Correlation coefficients between filtered signals:

Xk = Xk, X∗ = X, (23)

ρk
1 = corr(X∗W, XkW), k = 1, 2; (24)

(2) Correlation coefficients between filtered signals with a
canonical correlation analysis projection:

Xk = X̂k, X∗ = X, [Ak, Bk] = cca(X∗W, XkW), (25)

ρk
2 = corr(X∗WBk, XkWBk), k = 1, 2; (26)

(3) Correlation coefficients between the distances of fil-
tered signals:

Xk = X̂k − X̂3−k, X∗ = X − X̂3−k, (27)

[Ak, Bk] = cca(X∗W, XkW), (28)

ρk
3 = corr(X∗WBk, XkWBk), k = 1, 2. (29)

For each trial, six features can be obtained. In the above three
equations, cca denotes the function to calculate the projection
of the canonical correlation analysis and returns the canonical
coefficients of the two input data matrices. The function corr
returns the 2-dimensional correlation coefficient between the
two input data matrices.

The TRCA+CCP method is applied to evaluate the influ-
ence of the number of missing entries in simulation I. In
the two-class classification task, the classification is imple-
mented between elbow flexion and resting or elbow extension
and resting. In the classification between movement states
(elbow flexion or elbow extension) and rest state (resting),
the EEG signals in the resting state are the original ones (no
completion procedure) while there are three types of EEG

signals in the movement states: completed with simple inter-
polation, completed with TCMs and original. A 10-fold cross
validation is applied.

3 Results

In the following section, we compare the LNRMSE or
δLNRMSE of four TCMs (STDC, HaLR, WOPT, and BCPF)
with those of the interpolation method (Interp) in three sim-
ulations. The LNRMSE and δLNRMSE results are aver-
aged across three actions (elbow flexion, elbow extension,
and rest) because of their similar conclusions. In the clas-
sification task in simulation I, we classify two states using
the TRCA+CCP method: elbow flexion versus rest and el-
bow extension versus rest. The classification results are also
averaged across the two cases.

Before the simulations, the singular values of the unfolded
matrices of the EEG tensors are tested. The singular value de-
composition (SVD) is applied to the matrices, which are un-
folded from the EEG tensors along three axes [27]. Figure 4
presents the singular value curves along sample time, chan-
nel, and trial, individually. These singular value curves are
averaged across the original tensors of the 15 subjects. The
curves decrease sharply, which means that these EEG tensors
can be compressed into a low-rank tensor.

3.1 Quality of reconstructions versus the number of
missing entries

In simulation I, the aim is to determine how the number of
missing entries influences the completion effects of TCMs.
We have two cases for the change of the number of missing
entries: (1) changing NmCT; and (2) changing NmTL.

(1) Changing NmCT. Figures 5 and 6 show the comparison
between TCMs as NmCT changes for LNRMSE and classifi-
cation accuracy, individually. In Figure 5, it can be seen that
the LNRMSE remains stable as NmCT increases for all four
TCMs. When NmCT is very small, the LNRMSE is slightly
higher than these constants for the four TCMs. STDC has the

0 200 400 600

Ntime

0

50

100

150

200

S
in

g
u

la
r 

v
a

lu
e

0 2 4 6 8 10 12

Nchannel

0

50

100

150

200

250

S
in

g
u

la
r 

v
a

lu
e

0 10 20 30 40 50

Ntrial

0

50

100

150

S
in

g
u

la
r 

v
a

lu
e

(a) (b) (c)

Figure 4 (Color online) SVD along three axes in EEG tensors. (a) SVD along sample; (b) SVD along channel; (c) SVD along trial.
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Figure 5 Simulation I: Evaluation of the LNRMSE as NmCT is increased. NmTL is set to 0.25 s (a) and 0.5 s (b) separately. The change of NmCT leads to very
small changes on the completion effects of TCMs. STDC shows better LNRMSE performance compared to the other compared TCMs.
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Figure 6 Simulation I: Evaluation of the classification against NmCT on MRCP encoding with TRCA+CCP. (a) NmTL = 0.25; (b) NmTL = 0.5.

best LNRMSE performance among the compared completion
methods. In Figure 6, we can analyze how the number of
missing entries and completion influences the classification
result between the movement and rest states. The accuracy
shows no major differences between the completed data and
original data.

(2) Changing NmTL. Figures 7 and 8 show the comparison
between TCMs as NmTL changes for LNRMSE and classifi-
cation accuracy, individually. In Figure 7, the LNRMSE de-
creases gradually as NmTL increases. However, in real EEG
acquisition, the value of NmTL will be minuscule. Therefore,
missing information in EEG signals can be easily recovered.

In the analysis of the influence by the number of missing
entries, we evaluate the influence from both the LNRMSE
and the classification with TRCA+CCP. From the perspec-
tive of the LNRMSE, increasing the number of missing en-
tries will lead to unrecoverable information loss, even with
TCMs involved. Nevertheless, compared to the simple inter-
polation method and the other TCMs, STDC has the high-
est LNRMSE, which means that data completed using STDC
has the smallest error among the compared completion meth-
ods. From the perspective of classification accuracy with
TRCA+CCP, accuracy has no obvious decrease until the time

length of missing entries is large enough. In this case, data
completed using TCMs have better performance than that
completed using basic interpolation techniques.

3.2 Analysis of robustness to initial conditions

In simulation II, the effect of changing the initial conditions
of the completion methods is investigated. A way to do that
is to randomly permute channels or trials. Since this permu-
tation will not affect the rank and content of the tensor, the
result should remain stable (theoretically, it should remain
the same). Any changes will then be due to the re-running
of the method with different initial conditions, leading to a
different convergence point. In Figure 9, the differences of
four TCMs are calculated using eqs. (16) and (17). The re-
sults displayed in Figure 9 show that the random permutation
in EEG signals has less influence on the completion effects
of STDC and HaLR. In comparison to WOPT, the other three
TCMs have more stable variances. Therefore, when complet-
ing missing entries in EEG signals with WOPT or BCPF, the
completed signals suffer the risk of being more dependent on
the initial conditions.

The methods that were used assume the low-rank of the
original tensor prior to completing the missing entries, and
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Figure 7 Simulation I: Evaluation of the LNRMSE as NmTL is increased. NmCT is set to 10 (a) and 20 (b) separately. The decrease of LNRMSE indicates
that the completion effects become worse as NmTL increases. STDC achieves the best LNRMSE performance among the compared TCMs.
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Figure 8 Simulation I: Evaluation of the classification against NmTL on MRCP encoding with TRCA+CCP. (a) NmCT = 10; (b) NmCT = 20.
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Figure 9 Simulation II: Influences of channel/trial permutations. The shuffling of channel ordering (a) and trial ordering (b) are implemented in this
simulation. It can be seen that the permutations have less influence on the completion effect of STDC.

we have checked the low-rank of the EEG tensors in Figure 4.
Any permutation in a particular mode is supposed not to
change the results because the rank of the tensor is invari-
able under any permutation. In theory, all the methods used
here are supposed to give the same results independently of
the permutation order in any of the dimensions of the tensor.
The differences between two permutations may be induced by
two numerical convergence problems for WOPT and BCPF.

(1) In WOPT, the initial rank cannot be automatically lo-
cated. When applying the WOPT method, the errors between
the completed tensor and original tensor cannot be reduced

to smaller values and the errors change within a small range
before the end of the iteration loops.

(2) In BCPF, the rank of the tensor can be determined au-
tomatically by the Bayesian reference. The rank of the EEG
tensor changes as the number of missing entries changes.
Furthermore, the Bayesian reference enables BCPF to locate
the rank of the EEG tensors. In the completion experiment,
the maximum rank is limited by the computer memory. The
most suitable rank is unlikely to be reached when the rank
of the the EEG tensor is out of the memory limit. The other
possible reason is the number of iteration loops. Due to the
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time-consuming computation carried out in BCPF, loops are
stopped early when the errors are stable and hardly change.

To check the completion effects of different permutations,
the time series with missing entries are depicted in Figure 10.
The terms contained in the legend ‘original’, ‘completed’,
‘completed (channel shuffled)’, ‘completed (trial shuffled)’
refer toX, X̂, X̂channel, X̂trial in eqs. (16) and (17). To compare
the differences between these permutations in the missing en-
tries more easily, the amplitudes of ‘completed’, ‘completed
(channel shuffled)’, ‘completed (trial shuffled)’ are added to
0.5, 1, 1.5, individually.

3.3 Analysis of quality of reconstructions versus the total
number of channels

In simulation III, the number of Nchannel of the EEG tensors
is changed. With it, we aim to simulate the different numbers
of electrodes for EEG experiments. Figure 11(a) presents the
results of simulation III. There are two points that need to
be explained in this figure: (1) STDC still achieves the best
performance among the other compared TCMs, but note that
the LNRMSE becomes considerably reduced when Nchannel

is less than 3, so it is better to adopt at least three electrodes
in EEG acquisition; (2) BCPF experiences an unexpected

decrease when Nchannel = 7. In Figure 11(b), the original
EEG signals and the completed EEG signals of Subject 1
in the missing entries are given. Compared to the original
EEG signals and BCPF-completed signals with Nchannel = 4,
BCPF-completed signals with Nchannel = 7 have a higher
amplitude. This phenomenon may be induced by insuffi-
cient convergence in the implementation of BCPF. Consider-
ing the time consumption and computer memory limitation,
loops are stopped early when the errors are stable and hardly
change.

In Figure 12, the spectrum differences on the missing en-
tries are analyzed for the EEG tensor. In Figure 12(a), the
time series with missing entries are depicted, with the missing
entries being completed. The section of the missing data is
comprised within the two red lines in the figure. Figure 12(b)
shows the spectrograms of these time series. In Figure 12(c),
the part of spectrogram which shows the differences can be
more clearly discerned, which allows for easier and better
comparisons.

In Supporting Information, the differences in the spec-
trum are compared to a numeric measurement, the average
spectrum error (ASE). The ASE has similar conclusions as
the LNRMSE for simulations I and II. The ASE results also
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Figure 10 The time series with missing entries of different permutations. To facilitate the comparison of amplitudes in the missing entries, the amplitudes of
‘completed’, ‘completed (channel shuffled)’, and ‘completed (channel trial shuffled)’ are added to 0.5, 1, 1.5, individually. (a) STDC; (b) HaLR; (c) WOPT;
(d) BCPF.
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Figure 11 Simulation III. (a) Completion effects comparison as Nchannel changes. Because the missing entries remain unchanged in simulation III, LNRMSE
is a constant for the interpolation method, as represented with the black dotted line. Thus, here it serves as a baseline. HaLR fails to complete the missing
entries and the LNRMSE remains empty with Nchannel = 1 for this method. (b) Signals comparison in BCPF-completed missing entries.

demonstrate that STDC has a better performance compared
to the other completion methods.

From the analysis of the results above, it can be seen that
STDC achieves a superior completion effect in comparison to
the other completion methods in all three simulations.

4 Discussion

In this work, we have proven through three experiments that
STDC is the most suitable TCM for completing missing EEG
signals among the compared completion methods. The three
experiments are based on the following assumptions:

(1) The LNRMSE measurement is a suitable way to eval-
uate completion effects;

(2) The used EEG dataset is representative of most EEG
signals;

(3) In simulation III, it is acceptable that missing entries
are set to the first channel.

The first assumption is that the LNRMSE measurement
can assess the completion effects of TCMs in three simula-
tions. The independent variables in these three are the num-
ber of missing entries, the permutation of channels or tri-
als, and the number of channels in EEG tensors, respectively.
The measurement should avoid influences from the potential
changes of the independent variables. In eqs. (13) and (14),
the factor NmTL and NmCT can balance the number of missing
entries. In other words, the LNRMSE used here measures the
averaged completion effects on each missing entry. There-
fore, the LNRMSE still works here even when the size of the
EEG tensor changes.

The second assumption concerns whether the used EEG
signals are representative. The active area of the brain
changes for different brain activities, e.g., brain activities in
the visual cortex and the motor cortex. The main difference
is the location of the active areas. Regardless of the loca-

tion of these areas, however, the different brain activities are
mainly characterized by the change of power, e.g., ERD phe-
nomena. In fact, we do not know the exact channel location
in EEG completion. As a result, the difference can be ignored
in EEG completion. The used EEG signals consist of signals
in both the rest and the movement states. For the EEG signals
in the movement state, the movement onset is located using
an exoskeleton sensor. The position of the movement onset
is fixed in the EEG tensors. In most offline EEG analysis, it
is common for EEG signals during certain brain activities to
be extracted and then analyzed. For EEG signals in the rest
state, the completion is also successful even without localiza-
tion. Therefore, the used EEG signals can be considered to
be representative of most EEG signals.

The third assumption focuses on the design of simulation
III. In this simulation, we set the only channel with missing
entries in the first channel of the EEG tensor. Although this
hardly occurs in real EEG completion, this operation is rea-
sonable because we have explored the permutation of chan-
nels. In simulation II, we calculated the differences between
two permutations of channel sequence δLNRMSEchannel with
eq. (16). The results in simulation II showed that changing
the permutations of channels has only very slight influences
on the completion effects for STDC, HaLR, and even WOPT.
Therefore, the third assumption is also reasonable.

5 Conclusions

Missing EEG signals deteriorate the performance of EEG sig-
nal analysis. In this work, we propose to use STDC to com-
plete missing EEG signals. We analyze the completion ef-
fects with LNRSME with four kinds of TCMs (STDC, BCPF,
WOPT, and HaLR) and with the interpolation method. Three
simulations are designed to demonstrate the outstanding fea-
tures of STDC.
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Figure 12 Spectrogram comparison on the missing entries in simulation III with the EEG tensor whose Nchannel is equal to 11. (a) Completion effects in the
time domain; (b) completion effects in frequency domain; (c) difference of completion effects in the frequency domain.

(1) Simulation I emulates how the completion effects
change as the amount of the missing entries changes. The

average LNRMSE of STDC is approximately 4.75, which
is greater than the other completion methods. This means
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that the completion effects of STDC are better than those of
the other completion methods. Classification accuracy with
TRCA+CCP is also applied on simulation I to analyze the
influence from the number of missing entries.

(2) Simulation II evaluates the influences of changes in the
order of the EEG channels (shuffling), which are supposed
not to affect anything, but in a practical scenario, we demon-
strate that this may change due to numerical convergence and
the initial conditions of the method. The average δLNRMSE
of STDC is approximately 15. This means that STDC expe-
riences minimal influences after changing the permutation of
the EEG channels. Due to the possibly insufficient iteration
loops induced by memory limitations and time consumption,
BCPF fails to meet the expectations.

(3) Simulation III studies the completion effects as the
number of EEG channels changes. The result in this simula-
tion shows that the EEG signals must consist of at least three
channels; otherwise, the TCMs will have an inferior comple-
tion effect. In addition, note that here STDC also has the best
LNRMSE performance among the compared TCMs.

When comparing the different completion methods, it can
be seen that overall STDC best fits the characteristics of EEG
signals. In future work, we will explore the influences with a
higher number of missing entries and will develop real-time
applications to complete missing EEG signals.
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