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Abstract

Empirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal
analysis in various fields like robotics, security and biomedical engineering. Since the dramatic increase in
amount of data puts forward higher requirements for the capability of real-time signal analysis, it is difficult
for existing EMD and its variants to trade off the growth of data dimension and the speed of signal analysis.
In order to decompose multi-dimensional signals at a faster speed, we present a novel signal-serialization
method (serial-EMD), which concatenates multi-variate or multi-dimensional signals into a one-dimensional
signal and uses various one-dimensional EMD algorithms to decompose it. To verify the effects of the
proposed method, synthetic multi-variate time series, artificial 2D images with various textures and real-
world facial images are tested. Compared with existing multi-EMD algorithms, the decomposition time
becomes significantly reduced. In addition, the results of facial recognition with Intrinsic Mode Functions
(IMFs) extracted using our method can achieve a higher accuracy than those obtained by existing multi-
EMD algorithms, which demonstrates the superior performance of our method in terms of the quality of
IMFs. Furthermore, this method can provide a new perspective to optimize the existing EMD algorithms,
that is, transforming the structure of the input signal rather than being constrained by developing envelope
computation techniques or signal decomposition methods. In summary, the study suggests that the serial-
EMD technique is a highly competitive and fast alternative for multi-dimensional signal analysis.

Keywords: Empirical mode decomposition, Signal serialization

1. Introduction

Empirical mode decomposition (EMD) [1] is a versatile data-driven method that quantitatively de-
composes real-world signals, whereby the original signal is modeled as a linear combination of amplitude-
modulated and frequency-modulated (AM-FM) functions, called intrinsic mode functions (IMFs) [2]. To-
gether with the Hilbert transform [3], the IMFs yield meaningful instantaneous frequency estimates that give5

sharp identifications of imbedded structures. The complete process is the so-called Hilbert-Huang Transform
(HHT) [4]. With no prior assumption on the nature of the data, EMD and its noise-assisted variants, such
as ensemble EMD (EEMD) [5] and complete ensemble EMD with adaptive noise (CEEMDAN) [6], have
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been put to use in numerous applications in diverse fields, such as in biomedical engineering [7], functional
neuroimaging [8], image enhancement [9] or fault diagnosis of mechanical systems [10]. However, these10

extensions are limited in applicability to one-dimensional time series, which was a major incentive for the
numerous variations of the standard EMD algorithm.

Recent advances in physics and engineering have brought new problems to light which deal with com-
plexity, uncertainty, non-linearity and multi-channel dynamics [11]. Over the past decade, EMD has been
successfully extended to be capable of handling multi-variate, multi-dimensional signal decomposition. These15

kinds of extensions can be collectively called multi-EMD algorithms. For multi-dimensional signals, extract-
ing local extrema to estimate the envelopes (which is the key issue in EMD algorithms) is not as straight-
forward as for one-dimensional signals, because the complex and quaternion fields are not ordered [12]. The
first attempts at a multi-variate EMD [13, 14, 15] were restricted to bivariate and trivariate cases, and were
later extended to n-variate signals by means of the Multi-Variate EMD (MVEMD) [16]. These extensions20

use various projection techniques to help capture the envelopes, where the data channels are projected onto
numerous direction vectors. On the other hand, the primitive multi-dimensional capabilities of EMD were
also restricted to two-dimensional data (images) [14]. Pseudo-bidimensional EMD (pseudo BEMD) [17], the
first approach, performed one-dimensional EMD on successive slices of 2D data, but generated poor IMF
components due to the fact that it ignored the correlation among the rows and/or columns of a 2D image.25

More appropriate bidimensional EMD algorithms, such as bidimensional EMD (BEMD) [18] and image
EMD (IEMD) [19], employed more complicated interpolation methods to estimate the envelopes, such as
radial basis functions and thin plate splines rather than the cubic spline interpolation of the standard EMD.

However, in multi-EMD it is generally required to find local extrema to interpolate these points in each
iteration of the process. These kinds of interpolation schemes have to face the following issues:30

Dimensional expansion: In a standard one-dimensional EMD, the IMFs must satisfy two criteria:
(1) the number of extrema and the number of zero-crossings must either be equal or differ at most by one;
and (2) the mean value of the envelope defined by the local maxima and local minima must be zero. The
situation is more difficult in the case of a multi-EMD, as parameters required for defining an IMF, such as
zero-crossings, are not so well defined in more than one dimension.35

Computational load: Morphological operations [20], such as projection techniques in multi-variate
EMD algorithms or interpolation methods in multi-dimensional EMD algorithms, render the envelope iden-
tification process complicated and time consuming, as it requires finding an interpolation surface on high
dimensional data space during each iteration. The computational load of such algorithms is prohibitive for
large-scale and complex scenarios.40

A few EMD extensions, focusing on optimizing the current poor envelope determination across expansive
domains, have been proposed to overcome the large computational load requirements. Fast and adaptive
BEMD (FABEMD) [21] employed order statistic filters (OSFs) to get the upper and lower envelopes in
the decomposition process instead of using surface interpolation. Green’s function in tension BEMD (GiT-
BEMD) [22] introduced the Green’s function as a surface interpolation technique, which in addition needed45

very few iterations to estimate each IMF. Most of these modifications have been specifically designed for
bidimensional signals. However, general fast-speed n-variate or multi-EMD algorithms are still in their
infancy, and further efforts are needed to speed up the signal decomposition.

In this study, we propose a simple and novel signal serialization technique, through which we can con-
catenate multi-variate or multi-dimensional signals into a one-dimensional signal. This paves the way for50

performing multi-signal decomposition through one-dimensional EMD algorithms. Most favourably, this
concatenation method can obviously reduce the computational time without altering the existing EMD
algorithms. Furthermore, it can provide a new perspective to optimize current EMD algorithms, that is,
transforming the structure of input signals instead of developing new envelope identification techniques
or new multi-EMD algorithms. Thus, the proposed fast serial-EMD method can be a good alternative,55

providing efficient signal analysis and mode decomposition.
The rest of the paper is organized as follows: before introducing the concept of serial-EMD, the standard

EMD and its variants will be briefly outlined in Section 2. The description of the proposed serial-EMD
algorithm will be discussed in Section 3. Results and discussion on various EMD algorithms with simulated
and real-world datasets will be given in Section 4. Finally, a conclusion will be drawn in Section 5.60

2

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



2. The classical EMD and its variants

The EMD and its variants can break down a signal into a finite sum of components. These components
form a complete and nearly orthogonal basis for the original signal, which can be described in terms of IMFs.

2.1. Standard one-dimensional EMD

For a real-valued signal x(k), the one-dimensional standard EMD [1] finds a set of N IMFs {ci(k)}Ni=1,65

and a residue signal r(k), so that

x(k) =

N∑

i=1

ci(k) + r(k) (1)

IMFs ci(k) are defined so as to have symmetric upper and lower envelopes, with the number of zero
crossings and the number of extrema differing at most by one. The standard one-dimensional EMD algorithm
can be described as follows:

Step 1. Find the locations of all the extrema of x(k).70

Step 2. Interpolate between extrema to obtain the lower (upper) signal envelope emin(k) (emax(k)).

Step 3. Compute the local mean m(k) = [emin(k) + emax(k)]/2.

Step 4. Compute the IMF candidate s(k) = x(k)−m(k).

Step 5. If s(k) satisfies some predefined stopping criterion, then define ci(k) = s(k) as an IMF, otherwise
set x(k) = s(k) and repeat the process from Step 1.75

The refinement process (steps 2 to 5), which is needed to extract every mode, requires a certain number
of iterations and is named as the sifting process.

2.2. Noise-assisted EMD

One of the major drawbacks of the standard one-dimensional EMD is the frequent appearance of mode
mixing [23], which is defined as either a single IMF consisting of signals of widely disparate scales, or a signal80

of a similar scale residing in different IMF components. The ensemble EMD (EEMD) [5] was proposed to
counteract the problem; it performs the decomposition over an ensemble of noisy copies of the original signal
and obtains the final results by averaging. The EEMD algorithm can be described as follows:

Step 1. Generate x(m) = x+ βw(m), where w(m) (m = 1, ...,M) are different realizations of white noise.

Step 2. Decompose each x(m) (m = 1, ...,M) completely by EMD, obtaining its modes c
(m)
i , where i = 1, ...N85

indicates the modes.

Step 3. Assign ci as the ith mode of x, obtained by averaging the corresponding modes.

It should be noticed that in EEMD, every x(m) is decomposed independently from different realizations
and for every one of them a residue ri(k) = x(k)− ci(k) is obtained at each stage. The extraction of every
x(m) (m = 1, ...,M) requires a different number of sifting iterations. This situation can cause different90

realizations of signal plus noise, might produce different number of modes and residual noise might be
involved in the modes. Taking these drawbacks into account, the complete ensemble EMD with adaptive
noise (CEEMDAN) [6] was proposed. The general idea is the following:

Step 1. Compute the first residue r1 = x− c̃1, where c̃1 is the first CEEMDAN mode, namely, the first mode
obtained by EEMD.95

Step 2. Obtain each first mode of r1+β1E1(w
(m)) by EMD, m = 1, ...,M , and compute the second CEEM-

DAN mode c̃2 by averaging these first modes.

Step 3. For i = 2, ..., N , calculate the ith residue ri = r(i−1) − c̃i.

Step 4. Obtain each first mode of ri+βiEi(w
(m)) by EMD, m = 1, ...,M , and compute the ith CEEMDAN

mode c̃2 by averaging these first modes100
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2.3. Multivariate EMD

The general approach for n-variate signals, multivariate EMD (MVEMD) [16], has the ability to extract
common modes across the signal components, making it suitable for the fusion of information from multiple
source. The MVEMD algorithm can be summarized as follows:

Step 1. Choose a suitable point set for sampling on an (n− 1) sphere.105

Step 2. Calculate a projection, denoted by {pθj (k)}Kk=1, of the input signal {v(k)}Kk=1 along the direction
vector xθj , for all j (the whole set of direction vectors), giving {pθj (k)}Jj=1 as the set of projections.

Step 3. Find the time instants {tθji } corresponding to the maxima of the set of projected signals {pθj (k)}Jj=1.

Step 4. Interpolate [t
θj
i ,v(t

θj
i )] to obtain multivariate envelope curves {eθj (k)}Jj=1.

Step 5. For a set of J direction vectors, calculate the mean m(k) of the envelope curves by averaging eθj (k).110

Step 6. Extract the detail d(k) using d(k) = x(k) − m(k). If the detail d(k) fulfills the stoppage criterion
for a multivariate IMF, apply the above procedure to x(k)− d(k), otherwise apply it to d(k).

2.4. Multidimensional EMD

The bidimensional EMD (BEMD) [18] is one of the most famous two-dimensional EMD algorithms on
2D image processing, and its variants [24, 25, 26] with various interpolation methods have been thoroughly115

studied. A typical sifting process for a general BEMD can be described as follows:

Step 1. Set r(x, y) = X(x, y). Identify all local maxima and local minima of r.

Step 2. Interpolate the local minima (maxima) to obtain the lower (upper) envelope surface emin(x, y)
(emax(x, y)).

Step 3. Calculate the mean of the envelope surface m(x, y) and subtract it from r(x, y) to update r(x, y).120

Step 4. Repeat Step 1 to 3 until the stopping criterion is met.

The state-of-the-art BEMD variant, Green’s function in tension BEMD (GiT-BEMD) [22], which replaces
the direct spline interpolation step by an interpolation based on Green’s function [27], turned out to be very
efficient in practical applications such as image analysis [28, 29]. Interpolation using Green’s function implies
that the points of the interpolating envelope surface can be expressed as125

s(xu) =

N∑

n=1

wnφ(xu,xn) (2)

where xu denotes any point where the surface is unknown, xn presents the nth data constraint, φ(xu,xn)
is the Green’s function and wn is the respective weight in the envelope representation. The GiT-BEMD can
be summarized in three steps:

Step 1. Calculate the local extrema s(xn) by using an 8-connected neighbourhood strategy, and estimate

the weights w using eq. 2 with locations xn = [xn, yn]
T
.130

Step 2. Using the interpolation eq. 2 for each of the known points, a linear system with N equations is
obtained. Then, solve for the weights w = G−1c.

Step 3. Using the weights w, the value s(xu) ≡ cu of the envelope surface can be estimated at any point

xu by solving eq. 2, where the vector φ = [φ(xu,x1), φ(xu,x2)...φ(xu,xN )]
T

contains the Green’s
function values of all distances between the N data constraints and the considered location.135

Various complicated envelope estimation techniques during each sifting iteration can be used to charac-
terize these EMD extensions. The poor performance and huge difficulty when interpolating points across
expansive domains are the primary reason for the heavy computational burden of multi-EMD algorithms.
In this paper, the mentioned EMD algorithms, EMD, EEMD, CEEMDAN, MVEMD and GiT-BEMD will
be used for performance comparison with the proposed serial-EMD.140

4

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



3. The proposed serial-EMD algorithm

With the aim of reducing the computational load during the sifting process for multivariate or multi-
dimensional EMD algorithms, a novel serial-EMD approach is proposed here based on a serialization tech-
nique. To start with, note that a multi-dimensional signal can be treated as being composed by multiple
vectors (one-dimensional signals). Then, using a transition, which is calculated by using some part of145

the data from each dimension, the multi-dimensional signal can be serialized. After that, the serialized
one-dimensional signal is decomposed by a standard one-dimensional EMD or its variants and IMFs for
serialized signal are calculated. Finally, after removing the redundant transitions, the IMFs of the original
multi-signals are extracted from the IMFs from the serialized signal by reshaping and slicing. The details
of the signal concatenation and IMF deconcatenation techniques are discussed in the following subsection.150

3.1. Serial concatenation of two signals

Figure 1: (a) The concatenation of signals f(t) and g(t) by inserting a transition signal h(t) computed through eq. (4). The
concatenated signal maintains the continuity and characteristics of the original signals. The only parameter we need to choose
is the length of transition D. (b) Details of the concatenation algorithm when applied to multiple signals arranged as columns
of matrix X. The final result is stored in matrix T.

Given two continuous functions f(t) and g(t) with t ∈ [0, T ], let us first consider the problem of how to
concatenate those signals avoiding a discontinuity in the joint, i.e. assuming that in general f(T ) 6= g(0).

We propose to define a transition function h(t) of length D < T , with t ∈ [0, D], which is to be inserted in
between f(t) and g(t) such that the resulting function s(t), with t ∈ [0, 2T +D], is continuous. Specifically,155

s(t) is defined as the serial concatenation of f(t), h(t) and g(t) as follows:

s(t) =





f(t) t ∈ [0, T ]
h(t− T ) t ∈ [T, T +D]
g(t− T −D) t ∈ [T +D, 2T +D]

(3)

A simple way of obtaining such a transition function h(t) is the following:

h(t) =

(
1− t

D

)
f(T − t) +

t

D
g(D − t), (4)

with t ∈ [0, D]. It is easy to show that by using this transition function h(t) the continuity of the resulting
function s(t) is guaranteed because h(0) = f(T ) and h(D) = g(0). It is noted that f(T − t) and g(D − t),
with t ∈ [0, D], correspond to the flipped versions of the tail of f(t) and the beginning part of g(t) with160

lengths D. Figure 1(a) shows the effect of the proposed continuous concatenation of two signals.
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3.2. The fast multiple serial concatenation algorithm

Let’s consider N signals of length M organized as columns ∈ RM xi, (i = 1, . . . , N) of matrix X of size
M ×N as follows:

X(M×N) =
[
x1 x2 · · · xN

]
(5)

Let D be the number of points we add between the signals to define the transitions in their concatenation.165

Then, consider the vector a with elements ai = i/(D + 1), i = 1, . . . , D, of evenly spaced values between
0 and 1, but with both values not included. In order to compute the set of filling points, we define the
sub-matrices of X, XA and XB, both of size D ×N − 1 in terms of the indices of X as follows (see Figure
1(b)-left):

XA(D×N−1) = X1:D,2:N (6)

XB(D×N−1) = XM−D+1:M,1:N−1 (7)

Then we compute the signal extensions in a matrix E as follows:170

E(D×N−1) = XA
f ⊙ auT +XB

f ⊙ afuT (8)

where u = (1, ..., 1) of dimension (N − 1). The symbol ⊙ stands for the the Hadamard product. The
super-index T means transposition and the super index f means the flip up-to-down permutation, which
flipped the order of the elements upside down along the first dimension. Note that the latter operation
is obtained from pre-multiplying the matrix/vector affected by the standard involutory permutation, also
known as backward identity or exchange matrix. The f operation, however, can be done by appropriately175

addressing the elements, thus avoiding multiplications.
By using the zero-vector z of dimension D, we build the matrix T which contains the transitions intro-

duced. Matrix T is defined in blocks as (see Figure 1(b)-right):

T(M+D×N) =

[
X(M×N)

E(D×N−1) z(D)

]
(9)

The vectorization of the matrix T provides the concatenated signals through the added portions of the
transitions.180

t((M+D)·N) = vec(T) (10)

Finally, we eliminate the z vector introduced in T to obtain the useful samples in x.

x(MN+DN−D) = t1:(M+D)·N−D (11)

Figure 1 shows graphically an example of the concatenation of two consecutive signals, xi and xi+1,
through the D filling samples xEi in terms of the elements involved in their formation. Note that using
the vector a, previously defined, and the i column vectors xAi, xBi of matrices XA, XB respectively, the
padding samples of column vector xEi of XE can be written as: xEi = xA

f
i ⊙ a+ xB

f
i ⊙ af .185

3.3. The fast IMFs deconcatenation algorithm

Let F (·) be any one-dimensional EMD algorithm or its variants, for the concatenated signals x without
D zeros attached. Its resulting IMFs R can be computed as follows:

R(MN+DN−D×K) = F (x(MN+DN−D)) (12)

where K is the number of IMFs. According to the definition of the EMD algorithm, the length of each
IMF should be the same as the length of the signal to be decomposed. Thus, the transition part E in the190

concatenated signal x is also decomposed and included in the resulting IMFs R.
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Figure 2: Detail of the deconcatenation algorithm applied to the resulting matrix R computed through EMD and its variants.
The resulting matrix R can be filled with D zeros for each column and can be reshaped to exclude the transitions. Notice
that the matrix Z in the matrix T becomes the last column in the transitions after the reshaping operation. The pure IMFs
of signals are stored in the matrix IMF.

In order to get the pure IMFs of every single signal, we build the matrix T to exclude the transitions
of IMFs from the resulting IMFs R, by using the matrix Z of size D ×K of all-zero elements. Matrix T is
defined in blocs as (see Figure 2-left):

T(MN+DN×K) =

[
R(MN+DN−D×K)

Z(D×K)

]
(13)

Finally, matrix T can be reshaped into a new (M +D)×N ×K shape (see Figure 2-right). The IMFs195

of transitions in the concatenated signals are stored in the last D columns after the reshaping operation.
Thus, we can eliminate the D ×N ×K transitions part introduced in T to get the pure IMFs.

IMF(M×N×K) = reshape(T, [M,N,K]) (14)

The graphical description of the deconcatenation of IMFs can be found in Figure 2. Note that for the
ith signal, its jth IMF can be written as: imf ij = IMF1:M,i,j .

Figure 3: The description of the serial-EMD algorithm for 2D signals. The original multi-dimensional signals are concatenated
by adding transitions. The IMFs for original multi-dimensional signals are extracted by removing the transitions.
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In summary, Figure 3 explicitly outlines the steps involved in the serial-EMD algorithm. The original200

multi-signals are concatenated by using part of the information at the head and tail of each dimension or
variate, and the IMFs of concatenated signal are deconcatenated by removing the transitions.

4. Experimental results

A simulation dataset, as well as a real-world face image database, have been used to test and validate
the proposed approach in order to show some of its potential applications. Several approaches are discussed:205

MVEMD, GiT-BEMD, standard one-dimensional EMD, EEMD, CEEMDAN and their corresponding pro-
posed serial-versions. For the standard one-dimensional EMD and its variants, the input data was treated
as a collection of one-dimensional slices, which enabled them to decompose the multi-signals. For the serial-
EMD and its variants, on the other hand, such an operation is not necessary, as the input data has been
naturally serialized to one dimension. The quality of IMFs and the time of decomposition are the two main210

performance indicators that have been used to evaluate these algorithms.
In the following subsections, we will detail the results under several situations (artificial multi-variate

signals, artificial multi-dimensional images and face images). Both standard-version and serial-version EMD,
EEMD and CEEMDAN were applied to these three situations, while MVEMD was only applied on arti-
ficial multi-variate signals and GiT-BEMD was only applied on artificial images and face datasets. For215

noise-assisted EMD algorithms, such as EEMD, CEEMDAN and GiT-BEMD, the noise standard devi-
ation (NSTD), number of realizations (NR), maximum number of sifting iterations (MaxIter) and other
hyper-parameters are set as the values recommended in their respective original papers[5, 6, 22]. All the
experiments have been carried out on the same laptop (Intel(R) i7-6700HQ @ 2.6GHz).

4.1. Artificial multi-variate signals220
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Figure 4: Synthetic multi-variate signals (U, V, W, X, Y, Z) with multiple frequency modes (32Hz, 16Hz, 8Hz, 2Hz).
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Similarly to MVEMD [16], synthetic multi-variate time series with multiple frequency modes were con-
sidered. Each variate, shown in the top row of Figure 4 (denoted by U, V, W, X, Y and Z), was constructed
from a set of four sinusoids (f1 = 32Hz, f2 = 16Hz, f3 = 8Hz, f4 = 2Hz). One sinusoid was made common
to all the components, whereas the remaining three sinusoidal components were combined so that the result-
ing signal had a common frequency mode (f3 = 8Hz). The pick-up mask eq. 15 is introduced to indicate225

which sinusoidal components will be included in each variate.

mask =




1 1 0 1 0 0
1 1 1 0 1 0
1 1 1 1 1 1
1 0 1 1 0 1


 (15)
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Figure 5: Decomposition results of one of the synthetic multi-variate signals (U) exhibiting multiple frequency modes (with
f1 = 32Hz, f2 = 16Hz, f3 = 8Hz, f4 = 2Hz) via the proposed approach applied to other EMD algorithms. The IMFs extracted
using serial-version algorithms (green) are similar to the IMFs extracted using standard-version algorithms (blue). Note that
the subsequent IMFs (IMF5, IMF6...) are omitted since the amplitude and frequency of these IMF components are small
enough to be ignored.
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The results for the IMFs for all algorithms are presented in Fig. 5. It can be observed that in terms
of the amplitude and frequency of the IMFs, the resulting IMFs generated by serial-version algorithms are
similar to the IMFs decomposed by standard-version algorithms, which indicates that the serialization of
data has little effect on the standard EMD itself. Compared with standard-MVEMD, the amplitude and230

frequency of the IMFs extracted by standard-version algorithms and by serial-version algorithms are more
inconsistent, which is known as the mode mixing problem. However, this is due to the defects of the EMD
algorithm itself, not because of the introduction of serialization methods.

Next, the computational load of these algorithms is investigated for synthetic multi-variate signals, as
presented in Fig. 6. In this figure, the bar ranges from Q1 (the first quartile) to Q3 (the third quartile)235

of the execution time distribution, the width represents the IQR (inter-quartile range), the median value is
indicated by a red line across the bar and the outliers are shown in black circles. Compared with standard-
MVEMD, the serial-version methods (EMD, EEMD, CEEMDAN) reduce the execution time by 99%, 74%
and 26%, respectively. Furthermore, the execution time of serial-CEEMDAN (t = 1154.97ms, std = 46.32),
the most costly among the three serial-version algorithms, is less than that of standard-MVEMD (t =240

1562.09ms, std = 58.46). For MVEMD, with the increase in the number of signals, the computational
complexity shows a geometrically increasing trend, which makes it difficult to apply it on n-variate signals
[13]. For serial-EMD algorithms, the computational complexity can be reduced significantly, because it
simplify the calculation of the mean envelope with the serialized one-dimensional signal.
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Figure 6: Comparison among various EMD algorithms for the artificial multi-variate signals (interval parameter, D = 50)
discussed in this paper in terms of the total time required. For each algorithm, the decomposition was repeatedly carried out
10 times. The black circles represent the outliers.

After the signal concatenation, information loss may be induced during the signal decomposition phase.245

This is because when compared with each independent signal, some extrema of the concatenated signal may
be changed. The rough junction can disturb the result of the mean envelope (ME), especially on the point
where two signals are connected, such that the two ends of the decomposed IMFs lose some information.
To prove this, we used signals U and V ′ (the signal V reversed from top to bottom) to simulate the rough
junction for signal concatenation. Figure 7 shows the results of the first IMF and its corresponding mean250

envelope signal in several decomposition situations. In Figure 7 on the top-right, although the IMF calcula-
tion result of the middle part will not be affected if the two signals are concatenated without a transition,
the two ends of the IMFs may not be correct due to a wrong mean envelope estimation. Besides, if the
number of data points in the transition part is not enough to characterise the signal information (Figure 7,
bottom-right), the mean envelope and the IMF may still not be correct even with a smooth concatenated255

signal. Thus, the interval parameter D is the key parameter for generating an effective transition part in
serial-EMD.

Then, the effect of the interval values on the IMFs decomposed by different algorithms are compared.
Fig. 8 presents the results for several interval parameters D from 1 (the lowest value for the interval) to 500
(half of the length of the signal). In the beginning (from D = 1 to D = 50), the larger the interval value is,260

the more similar the two ends of the IMF are to the middle part in terms of amplitude and frequency (for
example, IMF2 in Fig. 8), which indicates that the transition part can be used to avoid the discontinuity
in concatenated signals. However, for a larger interval (from D = 100 to D = 500), it is hard to distinguish
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between these IMFs, which means that there is no need to set a large interval between the signals.
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Figure 7: When optimized, the interval parameter D can reduce the information loss. Signals U and V ′ are decomposed using
standard EMD, and then serial-EMD is applied on the concatenated signal with varying D values. Red solid line: signal U with
the last 200 data points. Blue solid line: signal V ′ with the first 200 data points. Purple dotted line and green dotted line: the
first mean envelope (ME) needed to calculate the first IMF for signals U and V ′, respectively. Orange solid line and brown
dotted line: the transition part of the concatenated signal and the first MD, respectively. Black solid line: the first IMF. Red
bar: the significantly different parts in the IMF and ME between the standard EMD and the serial-EMD. Compared with the
other cases, serial-EMD (D=200) is able to generate a more smooth transition signal, resulting in more similar MEs and IMFs
to those obtained using standard EMD.
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Figure 8: The IMF components obtained using serial-EMD with different interval parameter values are displayed, with the
parameter ranging from D = 1 (the lowest value for the interval parameter) to D = 500 (half the length of the signals). Note
that only the first two IMFs are shown in this figure.

In addition, the effects of different interval values on the computational load of serial-EMD algorithms265

are also explored, as displayed in Fig. 9. From the beginning (from D = 1 to D = 50), the computational
load decreases gradually and reaches its lowest value at D = 50 (EMD: t = 10.96ms, std = 0.92, EEMD:
t = 397.92ms, std = 16.38, CEEMDAN: t = 1154.97ms, std = 46.32). Increasing the interval value improves
the continuity in concatenated signals, which speeds up the sifting process. However, for a larger interval
(from D = 100 to D = 500), the computational load increases gradually, which indicates that the effect of270

the transition part reaches its bottleneck since the time cost is more related to the length of the signal.
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In order to trade off between these two aspects, the hyper-parameter interval value D should be set to
20% of the length of the original signals. This value is also used in subsequent experiments.
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Figure 9: Comparison among various interval parameters from D = 1 (the lowest value for the interval parameter) to D =
500 (half of the length of signals) for serial-version algorithms in terms of the total time required. For each situation, the
decomposition was repeatedly executed 10 times. The black circles represent the outliers.

4.2. Artificial images

f=
20

f=
4

vertical

f=
1

horizontal ATC ATI

Figure 10: Left: Component results from a superposition of a horizontal ATI and a vertical ATI. Right: The original artificial
texture image (ATI) produced by summing up the three ATC images.

Similarly to MVEMD [22], an artificial texture image (ATI) of size 101 × 101 pixels is considered,275

which is composed of a superposition of artificial texture components (ATCs) of the same size. The ATCs
represent harmonically varying spatial oscillations (sinusoids) with horizontal and vertical spatial frequencies
(f1 = 20, f2 = 4, f3 = 1) and unit amplitudes, which are shown in Fig. 10 on the left. The first ATC
contains the highest spatial frequency, whereas the last ATC contains the lowest spatial frequency. These
artificial textures provide a good performance indicator of the algorithm, even though some imperfections280

cannot be avoided. The ATI, the summation of these three ATCs, is shown in Fig. 10 right.
Firstly, the IMFs decomposed using each algorithm are investigated. Based on the former result, the

optimal value of the interval parameter should be set at 20% of the length of the original signal. Thus,
considering that the size of the ATC is 101× 101, the interval parameter should be set as 20. The resulting
IMFs are displayed in Fig. 11. The resulting IMFs generated by serial-version algorithms are similar to285

the IMFs decomposed by standard-version algorithms. For standard-version and serial-version algorithms,
one single ATC can be decomposed into two or more IMFs (for example, some components of the second
ATC appear in IMF2, IMF3 and IMF4 for the serial-EEMD algorithm), which are caused by the artifacts
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introduced during the sifting process. Note that even though the IMFs decomposed using the EMD, EEMD
and CEEMDAN algorithms contain some striated texture compared with those decomposed using GiT-290

BEMD, the serial-version algorithms keep the same characteristics of the original ones.
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Figure 11: Decomposition of the ATI using standard-version algorithms and serial-version algorithms (interval parameter,
D = 20). Note that the subsequent IMFs (IMF4, IMF5...) are omitted since the amplitude and frequency of these IMF
components are small enough to be ignored.

Subsequently, the computational loads of theses algorithms for ATI decomposition are explored, as
presented in Fig. 12. When compared with standard GiT-BEMD, the serial-version methods (EMD, EEMD,
CEEMDAN) reduce the execution time by 99%, 87% and 60%, respectively. Moreover, the execution time of
serial-EEMD (t = 6.41s, std = 0.04) is 1.5 times faster than that of standard-EEMD (t = 10.15s, std = 0.69).295

In addition, the execution time of serial-CEEMDAN (t = 20.58s, std = 0.09), the most costly among the
three serial-version algorithms, is less than that of standard GiT-BEMD (t = 51.59s, std = 0.19). All these
results clearly show that the serial-version algorithms are better than the standard-version algorithms in
terms of computational load.
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Figure 12: Comparison among various EMD algorithms for the ATI discussed in this paper in terms of the total time required.
For each situation, the decomposition was repeatedly executed 10 times. The black circles represent the outliers.

4.3. Face database300

To demonstrate the validity of the serialization method, real-world face images as the ones used with
GiT-BEMD in [28] were considered. The face database (AT & T database) contains ten different images for
each of the forty subjects in the database, which represents a total of 400 different images. All images were
taken against a dark background, with the subjects in a frontal facial pose and with a varying orientation
of the faces. All images are in a gray scale of 256 values, with an original size of 92× 112 pixels.305
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Figure 13: Top: Original images of different people from an AT & T face database. Bottom: Corresponding noisy images with
Speckle noises at SNR = −6 dB.

The authors from [28] reported that the worst result of the face recognition system was in the case when
face images were corrupted by Speckle noise with SNR = −6 dB. The classification system used IMFs
extracted by GiT-BEMD. The Speckle noise adds multiplicative noise to the image elements I(x, y) in the
form I(x, y) = I(x, y)+ I(x, y)Â ·N(x, y), where N(x, y) is a uniformly distributed zero-mean random noise
with standard deviation σ, as provided in eq. 16. The presence of Speckle noise in the images clearly has310

an effect on the edges and fine details which limit the resolution contrast. The original images and their
corresponding noisy images are shown in Fig. 13. Note that only images with SNR = −6 dB Speckle noise
are used in the subsequent experiments.

fU (n) =

{
1/

√
2σ for n ∈ [−σ/

√
2, σ/

√
2]

0 otherwise
(16)

In Fig. 14, the resulting IMFs of the same noisy image of a face are presented when decomposed using
both GiT-BEMD and serial-version algorithms. Considering that the size of the image is 92 × 112, the315

interval parameter should be set to 20. Similarly to the results for GiT-BEMD, the noise can also be
separated from the original image using all the serial-version algorithms, and it is mostly captured by the
first two IMFs. After removing the first few IMFs and summing up the remaining ones, the relatively clear
images are presented in the summation column.
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The computational load of these algorithms for face images with Speckle noise is also investigated, as320

displayed in Fig. 15. For all the serial-version algorithms, the average computational load per image (EMD:
t = 0.024s, std = 0.004, EEMD: t = 0.578s, std = 0.033, CEEMDAN: t = 1.599ms, std = 0.077) is much
less than that of GiT-BEMD (t = 11.86s, std = 2.15), as shown in Fig. 15 (left). On top of that, the total
execution times for the processing of the whole AT & T database with noise are also presented in Fig. 15
(right), which shows that the serial-version algorithms are greatly superior to GiT-BEMD when processing325

large amounts of data in terms of the execution time.
More specifically, to decompose the face AT & T database, which contains 400 images, standard GiT-

BEMD takes about 90 minutes, while serial-EMD, serial-EEMD, serial-CEEMDAN take about 9 seconds, 4
minutes and 10 minutes instead, which reduces the execution time by 99%, 95% 88%, respectively.
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Figure 14: Examples of noisy images (SNR = −6 dB, Speckle noise) and their corresponding IMFs through GiT-BEMD and
serial-version algorithms. Note that the subsequent IMFs (IMF5, IMF6, ..., IMF12) are not shown in this figure. Summation
column: summing up all the IMFs excluding the first two.
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Figure 15: Left: Comparison between various algorithms for the processing of one single image in terms of the average time
required. We calculated the average computational load per image. The black circles represent the outliers. Right: Comparison
between various algorithms for the processing of the whole AT & T database in terms of the total time required.

In this real-world scenario, we also measured the execution times for each phase (concatenation, signal330

decomposition, deconcatenation) in the performances of all the serial-version algorithms. Note that for dif-
ferent serial-version algorithms working under the same runtime environment, the execution times of both
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the concatenation and deconcatenation phases should be roughly the same, since the performance of these
two phases is independent of the signal decomposition algorithm itself, and their computational loads are
only related to the amount of concatenated signals and the interval parameter D. In the concatenation335

phase, it took 2.09 seconds to serialize these 400 face images. In the deconcatenation phase, extracting the
real IMFs from the serialized IMFs with transitions took 1.76 seconds. Compared with the total execution
times shown in Figure 15 (right), signal decomposition takes much longer than the other two phases, which
demonstrates the high performance of the concatenation and deconcatenation processes.

To explore the ability to capture noise of the serial-version algorithms, the similar experimental paradigm340

as in [28] is used, which is slightly different to the original paradigm to reduce the dimensions of the feature
space. For image data with noise, its first few IMFs contain the high-frequency components, and its last
few IMFs contain the low-frequency components. Since the Speckle noise may be captured in the first few
IMFs, a reasonable way to improve the face recognition performance is by eliminating them or applying
further filters to these IMFs. The schema of this experiment is shown in Fig. 16. Images which have been345

corrupted by Speckle noise at SNR = −6dB are first decomposed by serial-version algorithms. Since the
first few extracted modes capture almost all of the noise contained in the image, these modes need to be
removed. A new data vector is created by using KNN as the classification approach. All the experimental
conditions, such as classification strategy, cross-validation strategy and its hyper-parameters, are consistent
with those described in paper [28], except for the algorithm used for image decomposition and the number350

of summed-up IMFs.

Figure 16: Schema of the face recognition experiment. All the IMFs except the first few are summed-up together to feed
the classifier. When compared with the original experimental paradigm [28], our paradigm employed the summed-up way to
process these IMFs instead of concatenating them.

Face recognition performance results for the standard GiT-BEMD and for the proposed serial-version
algorithms are presented in Fig. 17. In this case, several IMFs are summed up and flattened to reform a
new one-dimensional vector to feed the KNN classifier. With 10-fold cross-validation, it can be seen that
when compared with GiT-BEMD (accuracy=91.25%, std=4.63), serial-EMD (accuracy=92.50%, std=3.23),355

serial-EEMD (accuracy=93.24%, std=3.91) and serial-CEEMDAN (accuracy=93.49%, std=3.01) can all
achieve a higher accuracy.

For one single image, the number of IMFs decomposed by the three serial-version algorithms (EMD,
EEMD, CEEMDAN) may be inconsistent. For different images, the number of IMFs decomposed by one
algorithm may also change. Therefore, table 1 shows the distribution of the number of IMFs obtained when360

decomposing the 400 images (1200 total trials) using the three serial-version algorithms. Since the image can
be decomposed into 10 IMFs in most of the trials, the maximum number of IMFs is set to 10 in subsequent
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Figure 17: Highest face recognition accuracies for the standard GiT-BEMD and the proposed serial-version approaches by
10-fold cross-validation. Notice that the picked-up IMFs used for classification are different in each method. To achieve the
highest accuracy, we summed up the 2nd to 5th IMFs, the 2nd to 7th IMFs, the 3rd to 6th IMFs and the 5th to 8th IMFs,
respectively, which correspond to the red rectangle in Fig. 18.

Table 1: The distribution of the number of IMFs decomposed by serial-version algorithms

number of IMFs 9 10 11 12
number of trials 66 960 172 2
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Figure 18: Accuracy heat map for all possible combinations of summed-up IMFs. The lowest-frequency IMF and the highest-
frequency IMF refer to where to start picking up IMFs from and where to end the selection. The black square is a 2×2 regions
which contains the highest accuracy. The topmost accuracy in each method is indicated with a red square in the sub-figure.

experiments. For those images with less than 10 IMFs, we use zeros to fill the last IMF. If the number of
IMFs exceeds 10, then the last few are discarded until only 10 remain.

To investigate the power of the new approach in depth, all the experiments were carried out to test all the365

possible different ranges of IMFs. To do this, we use the highest/lowest-frequency, which are the first and
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last IMFs of the summed-up range, respectively. For this part, the range of highest-frequency IMF is from
1 to 10, which is the same as that of the lowest-frequency IMF. For example, when the highest-frequency
IMF is set to 2 and the lowest-frequency IMF is set to 6, then all the IMFs from the 2nd IMF to the 6th
IMF are selected to be summed up together and are fed to the KNN model.370

Fig. 18 shows the heat maps of the face recognition accuracies for different ranges of IMFs using the
serial-version algorithms. In this figure, the darker the red, the higher the accuracy. The zoomed sub-figure
of each heat map contains the best accuracy and shows the highest/lowest-frequency IMF corresponding to
that highest accuracy.

Firstly, for serial-EMD, it can be observed that the highest accuracy is achieved with the combination of375

when the highest-frequency IMF is the 2nd IMF and the lowest-frequency is the 7th IMF (highest accuracy =
92.50%). Likewise, for serial-EEMD (highest accuracy = 93.24%) and serial-CEEMDAN (highest accuracy
= 93.49%), a similar result to serial-EMD can be observed, but with differently selected highest/lowest-
frequency IMFs. When compared with the standard GiT-BEMD (highest accuracy = 91.25%), all these
serial-version methods can achieve a higher accuracy, which means that our approaches are better at sepa-380

rating noise from the synthetic images than GiT-BEMD.
Hence, it can be observed that the middle-range IMFs can achieve a higher accuracy than in other

conditions, which shows that the IMFs in the middle range contain the most amount of information of the
face images.

If we only use a single IMF to train the classifier, which corresponds to the diagonal in each heat map385

in Fig. 17, it can be seen that the first IMF achieves the highest accuracy out of any other IMF for all
the algorithms. This indicates that the first IMF not only contains noise but also contains information of
the original image. However, summing up multiple IMFs can achieve a higher accuracy, and note that in
that case, the first IMF is not included in the ideal IMF range, which again may indicate that most of the
information is kept in the middle range of the IMFs.390

In summary, our proposed method can not only achieve a higher accuracy than GiT-BEMD, but also
has a great reduction in computational load in comparison, which shows that our methods are efficient in
separating the noise from these synthetic face images and could be used in real-time applications.

5. Conclusion

Empirical mode decomposing (EMD) represents a fully unsupervised data-driven technique that allows395

us to analyze non-linear and non-stationary data sets such as images, EMG signals and fMRI data. EMD
encompasses a sifting process for estimating the intrinsic modes into which the data can be decomposed.
In most of the existing implementations of EMD, the sifting process allows for the frequency estimation
of the upper and lower envelope surfaces interpolating extreme data points. The computation of these
envelope surfaces becomes a problem in existing EMD variants due to its high computational load - the400

computation time grows exponentially with the data dimension, which also causes the existing multi-EMD
to be unsuitable for higher dimensions.

With the requirement of reducing the computational load during the sifting process for multi-variate or
multi-dimensional EMD algorithms, we propose a novel approach, serial-EMD, based on the signal serial-
ization technique. Firstly, the original multi-signals are concatenated using transitions, which are calculated405

using part of the information at the head and tail of each dimension or variate in the original signal. Then,
after vectorization, the serialized one-dimensional signal is decomposed using EMD or its variants and IMFs
for serialized signal are calculated. Finally, after removing the redundant transitions, the IMFs of the original
multi-signals are extracted from the IMFs of the serialized signal by reshaping and slicing.

We have shown experimental results for both real and artificial signals in terms of the quality of IMFs410

and the computational load, thus demonstrating that serial-EMD can be applied to multi-signals and can
be used for real-time applications, such as multi-channel EEG data analysis or fMRI data augmentation.
However, the serial-EMD is a double-edged sword: on the one hand, this algorithm only changes the shape
of the data, so it is easy to combine with the existing EMD algorithms; on the other hand, since this method
does not modify the signal decomposition method, the quality of the extracted IMFs depends more on the415
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signal decomposition algorithm itself. Although the serial-EMD and its variants are reliable methods that
work for multi-dimensional signals, improvements are still needed in the transition generation procedure to
yield a better decomposition performance. Furthermore, solving the problem of how to adaptatively optimize
the value of the interval parameter for arbitrary multi-dimension signals remains an open problem. We plan
to study this matter in our forthcoming work.420

Altogether, we believe that serial-EMD offers a highly competitive alternative to existing multi-EMD
algorithms and represents a promising technique for fast signal analysis.
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