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Gifted children and normal controls can be distinguished by analyzing the structural

connectivity (SC) extracted from MRI data. Previous studies have improved classification

accuracy by extracting several features of the brain regions. However, the limited size

of the database may lead to degradation when training deep neural networks as

classification models. To this end, we propose to use a data augmentation method

by adding artificial samples generated using graph empirical mode decomposition

(GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode

functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial

samples. After that, we use the original training samples and the new artificial samples

to enlarge the training set. To evaluate the proposed method, we use a deep neural

network architecture called BrainNetCNN to classify the SCs of MRI data with and

without data augmentation. The results show that the data augmentation with GEMD

can improve the average classification performance from 55.7 to 78%, while we get a

state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our

results demonstrate that the proposed GEMD augmentation method can effectively

increase the limited number of samples in the gifted children dataset, improving the

classification accuracy. We also found that the classification accuracy is improved when

specific features extracted from brain regions are used, achieving 93.1% for some feature

selection methods.

Keywords: GEMD, MRI, gifted children, structural connectivity, BrainNetCNN

INTRODUCTION

Intelligence can be seen as the ability to recognize and understand reality and use knowledge and
experience to solve problems such as memory, observation, imagination, thinking, and judgment.
Gifted children are regarded to have higher intelligence and perform better in attention, language,
mathematics, verbal working memory, shifting, and social problem-solving (Bucaille et al., 2022).
At the same time, gifted children demonstrate high working memory capacity and more effective
executive attention (Aubry et al., 2021). They also have significant differences in cognitive flexibility
function and problem-solving and reasoning (Rocha et al., 2020).
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Gifted children have higher intelligence and learn faster
than others, probably due to differences in neurophysiology
(Gross, 2006). Neurological differences mean that gifted children
may experience neurodevelopmental trajectories different from
normal children, leading to a greater connection of neuronal
pathways (Navas-Sánchez et al., 2014). Gifted children have
larger subcortical structures and more robust white matter
microstructural organization between those structures in regions
associated with explicit memory (Kuhn et al., 2021). They are
also characterized by highly developed functional interactions
between the right hemisphere and excellent cognitive control
of the prefrontal cortex, enhanced frontoparietal cortex, and
posterior parietal cortex (Wei et al., 2020). Ma et al. found
that gifted children have network topological properties of high
global efficiency and high clustering with a low wiring cost and a
higher level of local connection density (Ma et al., 2017). Gifted
children’s structural brain network has a more integrated and
versatile topology than normal children (Solé-Casals et al., 2019).

Based on previous work on the brain neuroscience of gifted
children, we believe that it is significant to identify gifted children
through the structure of their brains. In the past decades, many
neuroscientists have tried to understand the brain mechanisms
and proposed many types of neuroimaging techniques, such
as magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), and diffusion tensor imaging. In
recent years, deep learning algorithms have achieved good
results in processing these types of signals. Abdelaziz Ismael
et al. proposed an enhanced deep learning approach, residual
networks, for brain cancer MRI images classification and
achieved 99% accuracy (Abdelaziz Ismael et al., 2020). Sarraf et al.
used convolutional neural network (CNN) architectures Lenet-
5 and GoogleNet to classify fMRI data of Alzheimer’s disease
subjects and normal controls, and the accuracy of the test dataset
reached 96.85% (Sarraf and Tofighi, 2016). The BrainNetCNN
is proposed to predict clinical neurodevelopmental outcomes by
brain networks (Kawahara et al., 2017). It utilizes structural brain
networks’ topological locality to create edge-to-edge (E2E), edge-
to-node (E2N), and node-to-graph (N2G) convolutional filters,
which makes it perform well on human brain data classification.
Leonardsen et al. proposed that neural network is able to identify
subject brain from its MRI (Leonardsen et al., 2022).

The deep learning technology is notable for its impressive
performance and generalization capability, but the number of
effective samples in the medical imaging dataset is usually
small, leading to performance degradation. The training model
needs large amount of data to avoid overfitting (Caiafa et al.,
2020). However, obtaining enough MRI data is not easy. The
acquisition and preprocessing of brain data are more difficult
than image and voice data, for example. It is difficult to find
gifted children in our daily life. The number of gifted children
is small, especially those whose IQ test score is higher than
140. In this work, we use a sample of 29 children, from which
the MRI was obtained. The brain was parcellated into 308
regions and from each region 7 morphometric features were
extracted. Hence, we have a total of 2,156 features per subject (7
morphological features by 308 brain regions). Training a model
in such a small and high-dimensionalMRI dataset is complicated.

Therefore, we focus on MRI data augmentation to improve
model training. Data augmentation has proven to be useful in
MRI, improving the accuracy of schizophrenia classification by
5% (7–8% relative improvement using augmentation) (Ulloa
et al., 2015). Also, Nguyen et al. proposed a data augmentation
method synthesizing a new fMRI image by performing a T1-
based coregistration to another subject’s brain in native space.
This method was tested on antidepressant treatment response
fMRI and demonstrated a 26% improvement in predicting
response using augmented images (Nguyen et al., 2020). Previous
work proves that increasing the amount of neuroimaging
data through an appropriate data augmentation method can
significantly improve the accuracy of deep learning classification.

In our MRI dataset, we propose to use a data decomposition
method, graph empirical mode decomposition (GEMD)
(Tremblay et al., 2014). GEMD is an adaptation to graph signals
of the well-known empirical modal decomposition (EMD)
(Huang et al., 1998). EMD has some variants, such as GEMD,
masking EMD, ensemble-EMD (EEMD), and multivariate EMD
(MEMD). Masking EMD, EEMD, and MEMD can primarily
alleviate the mode mixing problem, and masking EMD and
MEMD can perform spatiotemporal reconstruction of active
sources (Muñoz-Gutiérrez et al., 2018). GEMD improves
many aspects of the critical points of EMD, namely, extrema,
interpolation, and stopping criterion (Tremblay et al., 2014).
Because a parcellation of 308 brain regions is used, which
can help to build a brain region connection graph, GEMD
is the best choice for our work, as we will base our data
augmentation on the decomposition-recombination strategy
first presented in Dinarès-Ferran et al. (2018) for EEG signals. To
our knowledge, this is the first time this technique has been used
on MRI data. To compare the results of the proposed method,
we also generate artificial samples through a more classical
approach, the synthetic minority over-sampling technique
(SMOTE) (Chawla et al., 2002).

In this work, the BrainNetCNN is used as a deep learning
classifier. The main motivation for using a deep learning method
is that the MRI data can then be fed directly into the model
without the need for any feature selection method. This is an
important aspect to keep in mind as feature selection methods
are usually very database-dependent, and the results could drop
if the database is changed. We train the BrainNetCNN for
the classification task, showing that a well-trained classification
model can increase the classification accuracy from 55.7 to 78%
when using artificial data. Moreover, in Zhang et al. (2021), a
hybrid selection method of morphological features and brain
regions on the same gifted children dataset was derived. They
used a completion method, simultaneous tensor decomposition,
and completion (STDC), for outlier correction. After tensor
completion, several feature selection methods were applied to the
training set to explore which morphometric features and brain
regions could perform better in the classification step. Based on
their methodology, we used GEMD to generate artificial data on
Zhang et al.’s work to achieve an accuracy of 93.1% on the F-score
(FS), combined feature selection, and rank FS method.

The rest of the article is organized as follows. the materials and
methods and the details of the experiments are introduced. Then,
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the experimental results are discussed, followed bydiscussion.
Finally, the conclusions are summarized.

MATERIALS AND METHODS

The overall experimental process is shown in Figure 1. In this
section, we introduce the six parts in order. The details of the data
are first described. Then, we show the brain region atlas and the
morphometric features. After that, the basic algorithm principle
of GEMD will be provided. Then, the data augmentation with
GEMD is introduced. The following is the structural connectivity
(SC) analysis, which converts MRI images into a correlation
matrix. Finally, we introduce a deep learning network, the
BrainNetCNN, as a classifier.

Gifted Children MRI Dataset
The MRI dataset of gifted children contains 29 healthy, right-
handed male subjects without neurological diseases (Solé-Casals
et al., 2019). We refer to this dataset as the UVic-gifted
children dataset (UVic-GC dataset). There is no significant age
difference between the two groups. Gifted children have a high
IQ and outstanding performance in various tasks such as spatial,
numerical, reasoning, verbal, and memory (Gras et al., 2010).
The criteria for gifted group included having an IQ in the very
superior range (≥140). Gifted children also had a performance
above the 90th percentile in three of the following aptitudes,
namely, spatial, numerical, abstract reasoning, verbal reasoning,
and memory. More details on the dataset can be found in
Solé-Casals et al. (2019). Table 1 summarizes the details of
the dataset. Using similar procedure and scanning parameters,
all participants underwent examinations in a 3 T MRI scanner
(Magnetom Trio Tim, Siemens Medical Systems, Germany). The
raw (anonymized) MRI data are available in the OpenNeuro
repository (https://openneuro.org/datasets/ds001988).

Brain Region Atlas and Morphometric
Features
In our study, the brain is divided into 308 cortical regions
following previous work (Romero-Garcia et al., 2012). The
parcellation atlas is based on the Desikan-Killiany Atlas (68
cortical areas). Each area defined in the Desikan-Killiany
atlas is subdivided into spatially contiguous areas through a
backtracking algorithm available in FreeSurfer (Desikan et al.,
2006). The size of each area is approximately equal to 500 mm2.

The original feature matrix includes seven morphological
features measured in each of the 308 brain regions. Figure 2
shows the morphological features such as gray matter volume,
cortical thickness, surface area, intrinsic curvature, mean
curvature, curvature index, and fold index.

Graph Empirical Mode Decomposition
Empirical modal decomposition can decompose a signal into a
set of intrinsic mode functions (IMFs), each covering different
frequency bands by interpolating the extremes in the time series
(Huang et al., 1998). The IMFs have two characteristics, namely,
(1) the number of its zero crossings must be equal or differ up
to one compared to its number of extrema and (2) IMFs’ upper

and lower envelopes must be symmetric to zero. When all the
IMFs of the original signal are extracted, the iterative process
is terminated. GEMD is an adaptation of the classical EMD for
graph signals (Tremblay et al., 2014). It improves many aspects
of the critical points of EMD, namely, extrema, interpolation, and
stopping criterion.

For the graph creation, the set of N regions is used as nodes
for the graph. A weighted graph parameter δ is used to define
edges in the graph. Only pairs of regions (i, j) at a distance di,j,
shorter than δ, are connected by an edge, with weight wi,j =

exp(−d2i,j/2δ
2). The distance di,j is the Euclidean distance in the

features space. In that case, we get a graph G = (N, E), where E
is the set of edges. The adjacency matrix A, which contains all the
weights wi,j connecting the nodes, is also needed. We use the 3D
coordinate points of 308 brain regions to calculate the adjacency
matrix for the 308 brain regions graph.

For the definition of local extrema, a node n will be a local
minimum (or maximum) if for all its neighbors in G, x (n) <

x(m) [or x (n) > x(m), where x(n) and x(m) represent the value
of one of the features in the nth and mth brain regions]. Once
the extremes have been obtained, the graph signal is interpolated
to get the lower and upper graph envelopes needed to derive
the IMFs.

To maintain the hypothesis-free nature of the classical EMD
method, interpolation is regarded as a discrete partial differential
equation on the graph (Grady and Schwartz, 2003). As the
envelope is a slowly changing component, the interpolation

signal s needs to minimize the total graph change, s
′

Ls, where
L is the graph Laplacian matrix under the constraint that the
graph signal value of the known vertex remains unchanged. Let
K denote the set of vertices of the known graph signal, and U
denote the set of unknown vertices. Then, to calculate the new,
interpolated, graphical signals, we need to solve the following

equation minimize s
′

Ls subject to:

s (K) = x(K) (1)

Through simple rearrangement of vertices, s can be rewritten

as s
′

= [s
′

K s′U] in its equivalent vector expression, where sK
and sU are the vector representations of s (K) and s (U), and the

rearranged Laplacian matrix L =

[

LK R
R′ LU

]

. Finally, the graph

interpolation is a Dirichlet problem on the graph, and its solution
depends on the following linear equation (Kalaganis et al., 2020):

LUSU = −Rsk (2)

We refer the reader to Grady and Schwartz (2003) and Kalaganis
et al. (2020) for a detailed explanation of the graph interpolation
method. With the mentioned elements, the sifting process can be
modified easily. We set the parameter of the stopping criterion,
which was defined in Tremblay’s work (Tremblay et al., 2014), as
follows: stop the loop (steps 4–8 in the following algorithm) as
soon as the energy of the average envelope z (computed in the
step 6) is lower than the energy of the analyzed signal xi divided
by 1,000.

After defining the graph extremum and interpolation process,
the classic EMD algorithm can easily be extended to graph
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FIGURE 1 | Overview of the process for the data augmentation of the gifted children MRI dataset using GEMD. From left to right, the seven curves representing the

morphometric features in the 308 regions of the brain, for each subject (original MRI data). Then, the data are split into training and test sets; the training set is

augmented using GEMD; the structural connectivity of the data is calculated and used to feed the deep learning model. Finally, the structural connectivity is also

derived for the samples of the test set to demonstrate the capability of the classifier.

TABLE 1 | Membership information of gifted children MRI dataset.

Group Gifted group Control group

Average IQ 148.80 ± 2.93 122.71 ± 3.89

Average age 12.03 ± 0.54 12.53 ± 0.77

Sample size 15 14

signals. The process of data decomposition with GEMD is shown
in Figure 3. The GEMD algorithm (Tremblay et al., 2014) is
defined as follows:

• Step 1: Create the adjacency matrix A for the graph G;
• Step 2: Initializem = xi ;
• Step 3: While m does not meet the stopping criterion, repeat

step 4 to step 8;
• Step 4: Detect the local extreme ofm ;
• Step 5: Interpolate the upper and lower extremes of m and get

the envelopemaxand emin ;
• Step 6: Calculate the average envelope z = emin+ emax

2 ;
• Step 7: Subtract the average envelope from the signal: m =

m− z;
• Step 8: Set di+1 = m and xi+1 = xi − m;
• Step 9: Ifmmeets the stopping criteria: stop the decomposition

and terminate, return stored IMFs, and get [Mathtype-mtef1-
eqn-3.mtf].

Data Augmentation
The MRI dataset contains P = 29 subjects. Therefore, the
training set can be regarded as a three-dimensional tensor T ∈

RBxFxP (B: number of brain regions; F: number of features; P:
number of subjects). If the number of subjects in the training set
is too small, the model will tend to be overfitted. To overcome
the overfitting problem in the UVic-GC dataset, we propose to

increase the training set through GEMD. The data augmentation
procedure is based on a decomposition-recombination strategy,
originally proposed in Dinarès-Ferran et al. (2018), and first
used in a deep learning context in Zhang et al. (2019). The data
augmentation process is shown in Figure 4. This method has the
following steps:

• Step 1: Data decomposition.

• Create the adjacency matrix A for the graph G. In our work,
A is obtained by calculating the Euclidean distance among the
308 regions.

• Organize the MRI data of all subjects and get the concatenated
tensor T ∈ RBxFxP.

• Decompose T with GEMD and get TIMF ∈ RM×B×F×P, where
M is the total number of IMFs (M = 5 in our experiments).

• Step 2: Artificial data generation.

• Randomly select M subjects from one of the groups (gifted
group or control group).

• Take one IMF from each subject so that you end up with one
IMF from each category (IMF1 to IMF5), i.e., each subject
contributes with one IMF to create the new artificial data. The
artificial data of the nth feature is the sum of theM IMFs.

Structural Connectivity Analysis
After creating artificial samples, we use the original subjects and
the artificial to perform the classification. For that purpose, we
calculate the SC between features in all the regions. The SC
matrix (one matrix per sample, i.e., original subjects and artificial
subjects created via GEMD) will be used later as the input data
for the deep learning classification system. SC represents the
data correlation between two brain regions (Qi et al., 2019).
Pearson’s correlation or coherence is usually used to compute the
correlation. We use Pearson’s correlation and z-score to obtain
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FIGURE 2 | Morphometric features extraction pipeline.

the SC in this work.We correlate the seven values (morphometric
features) of one region with the seven values (morphometric
features) of another region. We perform these correlations for
all possible pairs, obtaining a 308 × 308 matrix per subject.
Assuming two brain region data x and y, Pearson’s correlation
(Kotu and Deshpande, 2019) between x and y can be expressed
as follows:

c
(

x, y
)

=
Sxy

√

SxxSyy
(3)

where Sxy is the covariance of x and y, which is defined as,

Sxy =

n
∑

i=1

(

xi − x
) (

yi − y
)

(4)

Sxx and Syy can be calculated as the variance of x and y,
respectively. After we get the Pearson’s correlation ofMRI data, z-
score is used to standardize it. Finally, a three-dimensional tensor
of dimensions 29 × 308 × 308 is obtained.

This procedure was introduced by Seidlitz et al. (2018)
to estimate the inter-regional correlation of multiple MRI
features in a single subject instead of estimating the inter-
regional correlation of a single feature measured in multiple
subjects (which is done with the structural covariance analysis).
Therefore, we end up with an SC matrix per subject.

Neural Network Classifier
As the BrainNetCNN (Kawahara et al., 2017) outperforms lots of
othermethods on structural brain networks datasets, we choose it
as a neural network classifier in our experiments. There are three
kinds of convolutional filters in BrainNetCNN, namely, E2E,
E2N, and N2G filters. They leverage the topological locality of
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FIGURE 3 | The progress of data decomposition with GEMD. GEMD can decompose feature series (different color lines on the left) into IMFs simultaneously. Here, we

use seven morphometric features from MRI data as a decomposition example. Every feature is decomposed into four or five IMFs (different color lines on the right). If

only four IMFs are decomposed from raw data, zero-padding will be used to have a total of five IMFs in all the decompositions, so that the data augmentation can

proceed successfully.

FIGURE 4 | The generation of artificial MRI data. Here, we generate the artificial data in feature F as an example. We randomly select M subjects from the original MRI

data. Then, we obtain the IMFs, which are decomposed with GEMD. The IMFs decomposed form feature F of the M randomly selected subjects are recombined.

Then, they are added up to obtain the artificial data of the feature F.

structural brain networks. E2E filter convolves the brain network
adjacency matrix and weights edges of adjacent brain regions.
E2N filter assigns each brain region a weighted sum of its edges.
N2G assigns a single response based on all the weighted nodes.

These three filters consist of convolution kernels: kernel c1 ∈

R1×D, c2 ∈ RD×1. The kernel of the E2E filter is cE2E = c1 + c2 ∈
RD×D. D is the number of nodes in a graph, which corresponds
to the number of brain regions in this work. The kernels of the
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FIGURE 5 | Structure of the BrainNetCNN network.

FIGURE 6 | The mean of accuracy and standard deviation with GEMD augmentation for the different number of artificial samples.

E2N filter and N2G filter are cE2N = c1, cN2G = c2. In our
experiment, the structure of the BrainNetCNN can be simply
expressed as Input (308 × 308 SC matrix) -> E2E (4 channels)

-> relu -> E2N (16 channels) -> relu -> N2G (32 channels)
-> dense1 (16 channels) -> dense2 (1 channels). This structure
is shown in Figure 5. We use the adaptive moment estimation
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FIGURE 7 | Best accuracy using GEMD, SMOTE, and non-augmented case in 10 independent sessions.

FIGURE 8 | The data augmentation process on the UVic-GC dataset with GEMD and feature selection experiment.

(Adam) optimizer, with learning rate lr = 0.001, β1 = 0.9, and
β2 = 0.999. The network is trained using 300 epochs, and the
batch size is 32. Considering the size of the dataset, we applied
10-fold cross-validation and repeated the experiment 10 times to
get the average accuracy.

RESULTS

GEMD Performance on BrainNetCNN
We want to prove that the data augmentation with GEMD
can improve the performance of the BrainNetCNN in the
classification of the UVic-GC dataset. Therefore, we randomly
selected 14 subjects (7 from the gifted group and 7 from the
control group) as the original MRI data for the training set. The

training set also contains artificial MRI data generated through
GEMD from the original data of this training set. The rest of the
subjects are used as the test set, containing 15 subjects.

Aiming to study how the number of artificial subjects
affects the performance in the training set, we increase the
number of artificial samples from 0 to 400 for each group.
For each session, the original MRI data are split into the
training set and test set. The training set is used to generate
the required number of artificial samples. The model is
then trained using the original training set and the artificial
samples generated from it, and finally the model is tested
with the remaining test set. This process is repeated 10
times for each number of artificial samples to get the final
average accuracy.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2022 | Volume 16 | Article 866735

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. GEMD Data Argumentation for Gifted Children

FIGURE 9 | The KNN (left) and SVM (right) accuracies obtained depending on the feature selection method used for the non-augmentation case and augmentation

with GEMD case.

FIGURE 10 | Feature map of the artificial gifted group (artificial gig), artificial control group (artificial cog), original gifted group (gig), and original control group (cog)

plotted with UMAP.

In Figure 6, we show the classification accuracy for a different

number of artificial samples. As can be seen, the performance

of the BrainNetCNN can be improved when adding artificial
samples, from 10 artificial samples to 400 artificial samples. The

improvement increases when the number of artificial samples
increases. Fitting a linear regression model gives us an idea of

the expected improvement when adding artificial samples. The
model shows a positive trend of gradient x1 = 0.00023035,
with a p-value < 0.01. This means that we should expect a
2.3% increase in the accuracy per 100 artificial samples added.
The BrainNetCNN has the best mean accuracy performance at
66.7% when the number of artificial samples is 350, while without
GEMD, the mean accuracy is only 56%. This is an increase of
10.7%, slightly better than the 8% predicted by the linear model.

The SMOTE is also used. The results are compared and
depicted in Figure 7, which presents the best accuracy with
GEMD, SMOTE, and non-augmented cases (baseline) in 10

different sessions. The accuracy is always improved, with respect
of the non-augmented case, when GEMD and SMOTE are used.
This emphasizes the importance of having more data to train the
model. Specifically, GEMD shows higher classification accuracy
than SMOTE in sessions 2, 3, 5, 6, and 8; while SMOTE has
better performance in sessions 1, 4, and 10. In sessions 7 and 9,
the accuracies of both GEMD and SMOTE methods are almost
the same. In addition, a classification performance of 93.3% is
obtained in session 2 by using GEMD, which is the best result
obtained with this database so far. The average of the 10 sessions’
best accuracy using GEMD achieves 78%, which is better than
using SMOTE (74.7%) and the baseline case (55.7%).

GEMD Performance on Feature Selection
Methods
In this section, we evaluate the performance of the GEMD using
the procedures described in Zhang et al. (2021). In summary,
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Zhang et al. proposed an outlier correction on the morphometric
features based on the STDC algorithm (Chen et al., 2013) and
explored several feature selection methods to classify MRI data
from controls and gifted groups. These methods were applied to
the UVic-GC dataset with outstanding performance.

According to Zhang et al. (2021), the NONE feature selection
method used all the features in the raw feature matrix. The
VON feature selection method used only the regions belonging
to types 2 and 3 of the von Economo atlas (van den Heuvel et al.,
2015), which corresponds to the associative areas of the brain.
Choosing the top highest features selected with a threshold, from
all the morphometric features and brain regions, was defined
as the FS feature selection method. The rank F-score (RFS)
method is a variation of the previous one in which, for each
region, the FS values are sorted by descending order, where the
morphometric features with the highest FS value are the selected
ones. Finally, the combination of VON and FS will lead the VFS
feature selection method, in which only type 2 and 3 regions
are considered when calculating the FS value for morphometric
features. Two traditional machine learning methods, KNN and
SVM, were used as classifiers (Zhang et al., 2021), with leave-one-
out as a cross-validation strategy.

The process of this experiment is shown in Figure 8. First, we
use the outlier completionmethod STDC to compute the missing
entries from the estimated latent factors. Then, we enlarge the
training set of original MRI data by using GEMD. After that, we
use feature selection methods NONE, VON, FS, VFS, and RFS to
select different features. Finally, the model is trained by KNN and
SVM for classification.

From Figure 9, we observe that using data augmentation with
GEMD generally improves the performance of feature selection
methods. For the SVN case (Figure 9, right), the GEMDmethod
always improves the accuracy regardless of the feature selection
method, while for the KNN case (Figure 9, left) only in two cases
the accuracy is lower using artificial data. Note that for both KNN
and SVM the classification accuracy reaches 93% using FS and
VFS, which is the best result with this database, to the best of
our knowledge.

DISCUSSION

In our study, we have used GEMD to enlarge the UVic-GC
dataset. The motivation for exploring a data augmentation
strategy is 2 fold. First, the UVic-GC dataset is small. Second,
there are many parameters in the deep neural network that need
to be learned from the data. Therefore, overfitting could appear
due to insufficient amount of data.

We propose the GEMD augmentation method to solve the
problems mentioned above in this work. We analyze the GEMD
augmentation result in three aspects, namely, the influence of the
number of artificial subjects, the classification accuracy between
non-augmentation and augmentation, and the feature selection
method used.

It can be seen from Figure 6 that the accuracy shows an
upward trend with the increase in the amount of artificial data.
When the number of artificial data reaches 350, the classification
accuracy achieves the maximum. Note that the result may vary
considerably from experiment to experiment. This is due to the

non-convergence of the BrainNetCNN and the random factor
added when selecting the data for each experiment. Prettier but
unfair results could be shown by discarding the non-convergent
experiments, for example, but we show the full set of results to
point out these potential problems.

To clearly illustrate the distribution of the artificial data
generated by GEMD, Figure 10 depicts the original SC matrices,
named the original gifted group (gig) and original control group
(cog), and 20 artificial SC matrices of the artificial gifted group
(artificial gig) and artificial control group (artificial cog). This
figure uses Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) and Distributed Stochastic
Neighborhood Embedding (van der Maaten and Hinton, 2008)
for dimensionality reduction. It can be seen that the artificial
data of each group are projected around the original data of the
corresponding group, which is a way of showing that the artificial
data are meaningful, i.e., the data generated by GEMD are
consistent with the distribution of the original data. Furthermore,
the two classes (control and gifted) in the two figures can be
accurately separated. There is no obvious overlap between the
two groups, explaining why the linear classifiers (SVM and KNN)
combined with feature selection methods perform very well.

Even if our proposed method can augment the dataset so
that the artificial data help improve the classification accuracy,
we must highlight that the results of the BrainNetCNN are not
stable. This is due to two main factors, the non-convergence of
the model and the overfitting that appears despite the amount
of artificial data generated. This is the main drawback of the
proposed method. We are now investigating it and other possible
neural network models with fewer parameters to improve the
classification results when using a small number of original
MRI subjects in the training dataset and artificial data generated
with them. Figure 10 shows that the artificial data created using
the GEMD method are consistent with the original (real) data,
which encourages us to use this method and improve the
classification model.

CONCLUSIONS

Medical data such as MRI are difficult to obtain, and gifted
children are rare in our society. Identifying gifted children from
a small set of MRI data is not easy. At the same time, deep
neural networks require a large amount of data to improve their
performance. They cannot exert their full performance when the
dataset is too small. In that case, our work provides a feasible
solution by data augmentation. We use the UVic-GC dataset and
artificial data generated by GEMD to train the BrainNetCNN
neural network. This avoids using a feature selection method as
we feed the model directly with the SC data. The results show
that GEMDhas a significant effect that improves the performance
of the classifier. Furthermore, the GEMD data augmentation
method can be extended to other similar small datasets. Our
future work will focus on the application of GEMD on multisite
MRI data, such as the Human Connectome Project data. Due
to different scanner settings, parameters, and operators, the
distribution of MRI data collected in various regions is different.
We expect to be able to adjust the distribution of other datasets by
domain adaptation. In that case, we can predict the classification
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results of multiple MRI datasets using the trained model after
augmentation with GEMD.
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