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Abstract. This paper presents a method to solve a linear regression problem
subject to group lasso and ridge penalisation when the model has a Kronecker
structure. This model was developed to solve the inverse problem of
electrocardiography using sparse signal representation over a redundant dictionary
or frame.

The optimisation algorithm was performed using the block coordinate descent
and proximal gradient descent methods. The explicit computation of the
underlying Kronecker structure in the regression was avoided, reducing space and
temporal complexity.

We developed an algorithm that supports the use of arbitrary dictionaries to
obtain solutions and allows a flexible group distribution.
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1. Introduction

Generally, real-world signals exhibit spatiotemporal
characteristics. Signals are measured by sensors at
different spatial locations, recording the information
with a given sampling rate. For example, electrocar-
diographic imaging (ECGI) is a technique used to mea-
sure the electrical activity in the thorax, and it then
uses a model to estimate the electrical activity on the
cardiac muscle surface. This model is based on the laws
of electromagnetism which determine the spatiotempo-
ral dynamics of the fields generated by sources. The
family of problems that uses models to infer sources
from measurements are called inverse problems.

Modelling all the details can produce a burden
on the computation, making it unfeasible. Generally,
ECGI models assume that the thorax and heart
have static geometries with a homogeneous, isotropic,
and free source medium [1]. The inverse problem
in electrocardiography [2] depends on the cardiac
sources under consideration, such as the dipoles [3],
transmembrane voltage [4], extracellular potential [5]
and activation and recovery models [6]. When a model
is discretised by a boundary or finite element method,
numerical errors can occur owing to the precision and
meshing approximations [7, 8, 9].

The aforementioned limitations harm modelling
and promote ill-conditioning. Thus, a well-conditioned
model requires that the following properties are
fulfilled: 1) existence and uniqueness of the solution,
and 2) stability of solutions [10]. There are several
approaches, called regularisations, to mitigate ill-
conditioning, based on the inclusion of a priori
information. For instance, in the truncated singular
value decomposition approach, the idea is to set the
small singular values of the model to zero, to improve
the conditioning [11]. In fact, a priori information
does not depend on the application; instead it is based
completely on the stability of the problem.

However, ECGI regularisation methods can be
formulated from a statistical perspective [12, 13].
These schemes allow the inclusion of prior information
from training sets of either simulated or real data.
But a good estimation requires a large amount of
information, which is an important limitation of ECGI.

In this study, we are particularly interested in
regularisation by norm constraints on the solutions.
The idea is to include a priori information as
assumptions expressed through the norm of the

vectors. For instance, Tikhonov spatial regularisation
is a ℓ2-norm constraint over some operator applied to
the solutions, such as identity (zero order), discrete
gradient (first-order) or Laplacian (second-order)
operators. These methods assume that the operator
solution product is dense and are regarded as the
gold standard in most ECGI studies [5, 14]. However
a ℓ1-norm constraint, called lasso (Least Absolute
Shrinkage and Selection Operator) [15], promoted
sparse solutions. In [16] the authors hypothesised that
the normal derivative of the cardiac potential is sparse,
which justifies the use of the ℓ1 penalty. Additionally,
ℓ1-norm was tested on data terms to diminish the effect
of outliers on epicardial potential reconstruction [17].
Both norms and mixtures of them are broadly used
in convex optimisation, for example, elastic-net [18],
group lasso [19] and sparse group lasso [20]. Except for
[21], these methods have rarely been applied to ECGI.

Some attempts have been made to incorporate a
priori information that is more closely connected to
the application. In [22, 23], a spatial regularisation
approach was developed to simulate realistic spatial
basis for the heart potential to promote sparsity on the
decomposition coefficients, and then use the ℓ1-norm
constraint.

In [24], the authors used the same constraint, but
a temporal basis was defined by orthogonal wavelets
to generate sparse coefficients of cardiac signals.
Finally, [21] used temporal regularisation based on
orthogonal wavelets. But also includes the concept
of group sparsity to add spatial information to the
regularisation. To make this, a group lasso plus a
ridge regression constraint was implemented under two
conditions: 1) the wavelet transform must be generated
by a tight frame [25] and 2) each group includes all
spatial nodes.

In this paper, we present an algorithm to extend
the framework of [21] to support any dictionary
structure, that is, not only tight frames, and to allow
more flexible group distributions.

2. Materials and Methods

2.1. Problem formulation

In this study, we deal with linear models discretised
over space at p-nodes (measurements) and q-nodes
(sources) denoted by A ∈ Rp×q. If the model is
static over time, the relation between the variables of
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krongen 3

interest can be represented by a matrix operation along
n samples:

Y = AX+H, (1)

where Y ∈ Rp×n, X ∈ Rq×n, and H ∈ Rp×n

are matrices with measurements, sources and noise,
respectively.

To design a flexible regularization framework, we
propose to decompose the solutions using an arbitrary
frame or dictionary to penalise the decomposition
coefficients. Each row of X is a temporal signal that
can be decomposed into a weighted sum of k atoms.
Therefore, a synthesis operator or dictionary D ∈
Rn×k with atoms per column computes the signals as

X = ΘDT , (2)

where Θ ∈ Rq×k is the coefficients matrix. Replacing
(2) into (1), using the Kronecker product property
(X2 ⊗ X1)v = vec(X1VX2

T ) and denoting v :=
vec(V) the vectorize operator which stack vertically
the columns of V, we get,

y =

Z︷ ︸︸ ︷
(D⊗A) θ + h, (3)

where Z ∈ Rpn×qk has Kronecker structure. We
highlight that the explicit computation of Z becomes
impractical and should be avoided. For example, if
p = 200, q = 2000, n = 500 and k = 1000 the
Kronecker product requires ∼ 745 Gb using a single-
precision datatype, whereas A and D require ∼ 1.5 Mb
and ∼ 1.9 Mb, respectively. This restricts us to develop
a solver that avoids explicit computation of Z.

The existence and uniqueness of solutions to
system (3) depend on the shape and rank of Z.
However, we focus on unstable models in which a cost
function and a constraint are mandatory to obtain a
unique and stable approximated solution.

By assuming that the error is independent and
identically Gaussian distributed, we set up an ordinary
least squares problem:

min
θ

1

2N
∥Zθ − y∥22, (4)

being N = pn. Similar to [21], the constraint is a
mixing between the ℓ2 and ℓ2,1 norms, depending on a
parameter α ∈ [0, 1],

(1− α)
1

2
∥θ∥22 + α

m−1∑
i=0

ηi ∥θγi
∥2 ≤ ϵ. (5)

If α = 0 the constraint reduces to Tikhonov
regularisation, whereas if α = 1, then a group lasso
is obtained. We define Γ as a partition of Φ :=

{0, . . . , qk − 1}, that is, each group or set in Γ is non-
empty, pairwise disjoint, and the union of the sets in
Γ covers Φ. We call m := card(Γ) the number of
groups, and we refer to each set in Γ as γi, where
i ∈ {0, . . . ,m−1}. Additionally, we define xγi := x[γi],
Xγi

:= X[:, γi], and Xγi
:= X[:, γi] if card(γi) = 1.

The constant ηi > 0 is used to weight the norm ℓ2,1
when the groups have different sizes, i.e., card(γi) ̸=
card(γj).

Finally, rewriting (4) in terms of groups and using
a Lagrange formulation of (4) and (5), we introduce
a hyperparameters λ > 0 to control the penalization
weight,

min
θ

1

2N

∥∥∥∥∥
m−1∑
i=0

Zγi
θγi
− y

∥∥∥∥∥
2

2

+ λPα(θ) (6)

Pα(θ) = (1− α)
1

2
∥θ∥22 + α

m−1∑
i=0

ηi ∥θγi
∥2 (7)

2.2. Optimization strategy

The strategy to solve a group lasso problem was
first presented in [19] and extended to non-orthogonal
(Zγi

TZγi
̸= I) case in [20]. We use the former approach

which involves a block coordinate descent algorithm
nested using the proximal gradient method. We made
slight adaptations to incorporate the ℓ2 term and we
added some constraints into the partition Γ in order to
exploit the Kronecker structure of Z.

2.2.1. Block coordinate descent (BCD) The function
to be minimized in (6) is convex and non-differentiable
due to the ℓ2 norm involved in the group lasso
term. However a separability condition is fulfilled over
θγi

coordinates in the nondifferentiable part, which
ensures that the BCD algorithm converges to a global
minimum [26, 27].

The BCD algorithm defines a minimisation
problem over γi coordinates at each iteration where
the rest of the coordinates Γ \ γi are regarded as fixed.
In this way, the convex and differentiable part for each
γi in the jth iteration is

f j
i (x) =

1

2
∥Zγi

x− rj−i∥22 + ζ
1

2
∥x∥22 (8)

where ζ = (1− α)λN and,

rj−i = y −
(

i−1∑
k=0

Zγk
θjγk

+
m−1∑
k=i+1

Zγk
θj−1
γk

)
(9)

whereas the convex and non-differentiable part for each
γi does not depend on the jth iteration,

gi(x) = ζi ∥x∥2 , (10)
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where ζi = αλNηi. Finally, at each jth iteration, we
solve

θjγi
= argmin

x
f j
i (x) + gi(x) (11)

Subgradient equations Since the function to be
minimized in (11) is convex the subgradient equations
characterise the optimum x∗ := θjγi

. Denoting the
subgradient operator by ∂, we obtain:

∇f j
i (x

∗) + ∂gi(x
∗) = 0. (12)

We compute ∇f i
j(x) from (8),

∇f j
i (x) = ZT

γi

(
Zγix− rj−i

)
+ ζx. (13)

Also, from (10) we have that ∂gi = ζi∂ ∥x∥2, where

∂ ∥x∥2 =

{ x
∥x∥2

if x ̸= 0

{u : ∥u∥2 ≤ 1} if x = 0
(14)

Finally, solving (12) for x∗ = 0, we obtain
a discard condition that avoids computing the
optimization problem in (11) when the solution is zero:∥∥∥ZT

γi
rj−i

∥∥∥
2
≤ ζi. (15)

If (15) is not satisfied, an accelerated proximal
gradient method is performed; otherwhise, θjγi

= 0.

2.2.2. Accelerated proximal gradient method (APGM)
Proximal gradient methods are useful for optimising
convex composite functions, that is, functions which
are the sum of a differentiable term and a non-
differentiable term, e.g. (11). To implement it,
the proximal operator of the nondifferentiable term
is applied to the update step of the gradient descent
algorithm of the differentiable term. In our case, the
updating rule at the kth step is:

yk = prox
tigi

(
yk−1 − ti ∇f j

i (y
k−1)

)
, (16)

where ti ∈ (0, 1/Li] ensures convergence of ∥yk −
θjγi
∥ → 0 being Li the Lipchitz constant of ∇f j

i , and
the proximal operator of the non-differentiable term is

prox
tigi

(z) =

(
1− ti

ζi
||z||2

)
+

z, (17)

where (·)+ := max(·, 0).

Lipchitz constant The function f j
i is smooth, that is,

it has a Lipschitz continuous gradient which ensures
the existence of Li. To compute it, we can use the
additivity property of the Lipchitz operator applied to
(13):

Li = ∥Zγi
∥22 + ζ, (18)

where ∥X∥2 is the matrix norm induced by the ℓ2 norm.

Nesterov’s acceleration A Nesterov momentum is
performed to reduce the iterations. Equation (16)
evaluated on yk−1 preceed this rule:

xk = yk +
k

k + 3
(yk − yk−1). (19)

2.3. Implementation details

In this subsection we explain the algebraic operations
involved in both loops of the algorithm, and the
convergence criteria used in each case. In addition,
we show the simplifications implemented to reduce
the use of memory and calculation time in matrix-
vector and matrix-adjoint-vector operations. Also,
we present details of the range of hyperparameters,
initialisation strategies, appropriate convergence rates,
and information related to algorithm programming.

2.3.1. External loop At the external loop (BCD
iteration) we need to check the null condition (15) for
each group γi, and the stopping rule after a full cycle.

We do not compute rj−i directly from (9); instead,
we approach its value recursively. We set a variable
rext which has the role of partial residue (9) before
evaluating the null condition (15), and the role of total
residue afterwards.

Starting from the total residue rext = y −
vec(AΘ0DT ), we compute the partial residue rj−i as:

rext ← rext + Zγiθ
j−1
γi

. (20)

After evaluating the null condition and the
optimisation step, we obtain θjγi

and turn rext into the
total residue by,

rext ← rext − Zγi
θjγi

. (21)

The aforementioned process allows us to compute
rj−i and avoids performing the product Zθj . The BCD
algorithm is shown in Alg. 1.

Stopping criterion We consider that the algorithm
has converged when the maximum change in the total
residue between two full cycles is less than a predefined
tolerance, ϵext,

max |∆rext| < ϵext. (22)

2.3.2. Internal loop At the internal loop involved
in the APGM, we compute the total residue rint
recursively to evaluate the gradient (13). Initialising
at rint ← rj−i − Zγi

θ0γi
,

rint ← rint − Zγi
(xk − xk−1), (23)

and we compute (13) as,

∇fk
i = −ZT

γi
rint + ζxk. (24)

The APGM algorithm is shown in Alg. 2.

Page 4 of 13AUTHOR SUBMITTED MANUSCRIPT - BPEX-102836.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



krongen 5

Algorithm 1 Block coordinate descent

Require: Z ∈ Rpn×qk, θ0 ∈ Rqk, y ∈ Rpn, α ∈ [0, 1],
λ > 0, β ∈ (0, 1], (γi, ηi) for i = 0, . . . ,m− 1
N ← pn
ζ ← (1− α)λN
ζi ← αλNηi ∀i
Li ← ∥Zγi∥22 + ζ ∀i ▷ Lipchitz constants
ti ← β/Li ∀i ▷ step sizes
j ← 1
rext ← y − Zθ0

repeat
for i← 0 to m do ▷ external loop

rext ← rext + Zγi
θj−1
γi

▷ partial residual

if
∥∥ZT

γi
rext

∥∥
2
≤ ζi then ▷ null condition

θjγi
← apgm(Zγi , θ

j−1
γi

, rext, ζi, ζ, ti)

rext ← rext − Zγi
θjγi

▷ total residual
else

θjγi
← 0

end if
end for
j ← j + 1

until max |∆rext| < ϵext ▷ stopping criteria

Algorithm 2 Accelerated proximal gradient method

Require: Z ∈ Rn×m, x0 ∈ Rm, y ∈ Rn, α, β, γ
k ← 1
y0 ← x0

rint ← y − Zx0

repeat ▷ internal loop
∇fk−1 ← −ZT rint + βyk−1

z ← yk−1 − γ ∇fk−1

yk ←
(
1− γ α

∥z∥2

)
+
z ▷ proximal operator

xk ← yk + k
k+3 (y

k − yk−1) ▷ Nesterov’s
acceleration

rint ← rint − Z∆x ▷ update residual
yk ← xk

k ← k + 1

until
∥∥∥∆x

γ

∥∥∥
2
< ϵint ▷ stopping criteria

Stopping criterion The inner loop is stopped when
the norm of the generalised gradient is less than a
predefined tolerance ϵint,∥∥∥∥∆x

ti

∥∥∥∥
2

< ϵint, (25)

where ti is the step size of the i-group.

2.3.3. Matrix-vector products In this section, we
focus on the structure of Zγi

, with the aim of
reducing the time and memory burden involved on the
computation of the products Zγi

u and ZT
γi
v. The key

is to avoid computing Zγi
explicitly. To achieve this,

we return to (3) where Z = D ⊗A, and we note that
its r-column is given by Zr = D⌊r/q⌋ ⊗ Ar%q, which is
a column-wise Kronecker product. This leads to the
Khatri-Rao product definition for the group γi ∈ Γ,

Zγi = D⌊γi/q⌋ ∗Aγi%q, (26)

the division /, module % and floor ⌊ ⌋ operators are
entry-wise applied over γi. The Khatri-Rao product
property (B ∗ A)u = vec(AUdB

T ) where Ud is a
diagonal matrix, allows us to obtain Zγi

u without
computing the product of Zγi

and u. However, we
cannot use the same property to avoid the computation
ZT

γi
v. To overcome this issue, we set a constraint to the

set of partitions of Φ.
In figure 1 we show three example of partitions Γ of

the set {0, . . . , 19}. Each partition contains six groups
and are represented in a matrix. Each group is a set
of numbers which represents a set of entries of θ. To
facilitate the visualisation, each group is identified with
a texture. In panel A, we observe that an unstructured
partition implies that the computation of Zγi requires
the Kathri-Rao product.

In panel B, we choose a partition that verify
⌊γi/q⌋ = {ri, . . . , ri} for all γi ∈ Γ. Graphically,
we observed that each group/texture is contained in
a single column. Under this assumption, D⌊γi/q⌋ has
repeated columns Dri and the Khatri-Rao product in
(26) becomes the Kronecker product:

Zγi
= Dri ⊗Aγi%q. (27)

On one hand, from the Kronecker product
property, we obtain Zγi

u = vec(Aγi%qUDT
ri), but

in this case U = u, so a matrix-vector product
and an outer product were performed. However, we
compute ZT

γi
v = vec(AT

γi%qVDri) performing two
matrix-vector products.

Finally, in panel C, we add the hypothesis that
the groups have contiguous numbers (this is visualised
as non-interrupted textures), which allows us to make
a zero-copy evaluation of eachAγi%q ifA has a Fortran
memory order. Mathematically, we consider only the
partitions that satisfy γi%q = [ai, bi] for all γi ∈ Γ
denoting [a, b] := {a, a+ 1, . . . , b− 2, b− 1}.

2.3.4. Hyperparameters Commonly, linear regression
problems are performed on a grid of hyperparameters
and some heuristic criterion is defined to pick a unique
solution (α∗, λ∗). In this work, we set a fixed α∗

and the range of λ’s is determined by the ratio ϵ =
λmin/λmax. If the null condition (15) of each group is
evaluated at 0, we obtain the value of λ to deactivate
the group. Therefore, by taking the maximum of these
λ values, we obtain a null solution. Mathematically,
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A. An unstructured partition of Γ requires the
complete Khatri-Rao product to obtain matrix Zγ4 .

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

γ0 = {0}
γ1 = {1, 7, 8, 16}
γ2 = {2, 6, 9, 15}
γ3 = {3, 14, 18}
γ4 = {4, 5, 10, 11, 13, 17}
γ5 = {12, 19}

⌊γ4/5⌋ = {0, 1, 2, 2, 2, 3}
γ4%5 = {4, 0, 0, 1, 3, 2}
Zγ4 = D⌊γ4/5⌋ ∗Aγ4%5

B. A partition in which each group belongs to a
single column reduces the Khatri-Rao product to a
Kronecker one.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

γ0 = {0, 1, 2, 3, 4}
γ1 = {15, 19}
γ2 = {7, 8}
γ3 = {16, 17, 18}
γ4 = {5, 6, 9}
γ5 = {10, 11, 12, 13, 14}

⌊γ4/5⌋ = {1, 1, 1}
γ4%5 = {0, 1, 4}
Zγ4

= D1 ⊗Aγ4%5

C. A partition similar to Example B, where all
elements of each group are consecutive. This allows a
zero copy of the Aγi%q matrix.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

γ0 = {0, 1, 2, 3, 4}
γ1 = {15, 16}
γ2 = {8, 9}
γ3 = {17, 18, 19}
γ4 = {5, 6, 7}
γ5 = {10, 11, 12, 13, 14}

⌊γ4/5⌋ = {1, 1, 1}
γ4%5 = {0, 1, 2}
Zγ4%5 = D1 ⊗A[ : , 0 : 3]

Figure 1: Three partitions Γ showing the relation
between the group structure and the impact on the
computation of Zγ4

. Each γi is a set of numbers which
represents a set of entries of θ and are identified with
same texture. The black border highlights the group
number four and the associated modulus and division
operations.

we compute this value as

λmax =
1

Nα∗ max
i

∥ZT
γi
y∥2

ηi
(28)

Finally, the values of λ are organized in decreasing
order on a logarithmic scale. For α∗ = 0, we used
a manual range.

Warm start To accelerate the convergence of the
algorithm, we initialise the (α∗, λi+1)-optimisation
problem with the optimum solution of the previous
target (α∗, λi). Note that the values of λ are in the
decreasing order: λmax promotes a null solution.

Step size (ti) We set a fixed step size ti = β/Li with
β ∈ (0, 1] for each group γi in the proximal iteration.
We use the property ∥X1 ⊗X2∥2 = ∥X1∥2∥X2∥2, and
(27) to compute (18).

Weight (ηi) The weight ηi is compute as
√
pi being

pi = card(γi) [20].

2.3.5. Programming Algorithms 1 and 2 were coded
in Cython language [28]. We used the Basic Linear
Algebra Subprograms (BLAS) [29] routines through
SciPy [30] wrappers in all algebraic operations, which
drastically reduces the processing time compared to the
NumPy implementation [31]. Our implementations are
published on the internet.

2.4. Experiments

We used two different kinds of data. Firstly, random
data allowed us validating the proper functioning of the
algorithm. Then we extracted data from the EDGAR
database, which is used for research and validation of
ECGI algorithms [32].

2.4.1. Algorithm testing In this first experiment, we
simulated a matrix with the Kronecker structure, Z =
D⊗A, with D and A random matrices of size 10× 10
with zero-mean and unit-variance normal i.i.d. in each
element.

To obtain simulated solutions Θs ∈ ‘R10×10, we
created a dense matrix with normal distribution in
each element and we applied a mask with one group
per column and three levels of group sparsity: 90 %,
50 % and 0 %. The right panel of figure 1 shows the
simulated data with the coefficient values in gray scale.

We established values for α: α = 1 (group lasso),
α = 0.5 and α = 0 (ridge regression), and we computed
the measurements as ys = Zθs for each solution. Then,
we defined hundred points for the range of λ, and set
ϵ = 10−4. If α = 0, the range is [10−5, 100]. Finally,
the convergence rates are scaled with β = 0.8.

Page 6 of 13AUTHOR SUBMITTED MANUSCRIPT - BPEX-102836.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



krongen 7

From the above configuration, we executed nine
optimisations composed of three different values of α
for each group sparsity. Section 3 presents the norm
of the coefficients for each group and the relative error
to analyse the output of the algorithm. We define the
error as:

error =
∥Θ−Θs∥1
∥Θs∥1

(29)

2.4.2. ECGI application We compared the proposed
regularization against zero-order Tikhonov (Tkh0)
regularization based on several metrics. To achieve
this, we selected the following EDGAR datasets: 1)
Maastricht-09-15-06 : It contains a sinus beat and
another stimulated in the apex of the left ventricle
of an anaesthetized dog, sampled at 2 kHz. Sinus
beat contains 140 ECGs with one interpolated (to poor
signal quality) and 83 epicardium noise-free channels.
At the same time, there are 135 electrodes located on
the torso and 65 epicardium noise-free electrodes for
the ELG recording of the stimulated heartbeat. The
heart mesh contains 1321 nodes. We refer to this
dataset as sinus dog (SD) and paced dog (PD). 2)
Auckland-2012-06-05 : It contains multiple sinus and
paced beats at the epicardium of a pig. We used
the first beat of both procedures, sampled at 2 kHz.
The sinus beat experiment contains 171 electrodes
on the torso, 30 of them were interpolated (to poor
signal quality) and 224 epicardium noise-free channels.
At the same time, there are 171 electrodes located
on the torso with 29 ECGs that were interpolated
and 226 epicardium noise-free channels. The heart
mesh contains 1502 nodes. We refer to this dataset
as sinus pig (SP) and paced pig (PP). 3) KIT-20-
PVC Simulation-1906-10-30 EP Peri : It is a dataset
with ECGs and extracellular potentials simulated
computationally with FEM and the bidomain model.
It contains a stimulated heartbeat in different areas of
the heart of a human. For this study, we have used the
stimulated beat in the lateral endocardial zone of the
left ventricle. It contains 163 electrodes on the torso
and 502 electrodes/nodes on the pericardium. We refer
to this dataset as paced human (PH).

For all datasets, we created the torso mesh using
the electrodes as nodes, and the faces have been built
with the provided ball pivoting algorithm by MeshLab
generating a closed surface [33]. The datasets provide
the mesh of the heart.

Once the geometries were defined, we computed
the matrix A solving a Laplace problem with Cauchy
boundary conditions [8] using Bempp [34].

We interpolated torso channels with low SNR
using the Laplace method [35] whereas we have
discarded cardiac channels under same conditions.

To perform the experiments, we used two

dictionaries. First, we applied a wavelet dictionary
db2 (Daubechies with two vanishing moments). It
contains six levels of detail and a scaling function for
the approximation level with a step between atoms of
1% of the temporal samples of the signal. Secondly,
we built a physiological dictionary (Phy) from the real
electrograms in order to test a more customized frame.

We implemented α = 0.95, a hundred values of
λ, ϵ = 10−5 and β = 0.8. We selected λ∗ such
that the median of the spatial correlation coefficient
is maximised, and each group contains all the cardiac
nodes. To compare our results with the gold standard,
we applied Tikhonov regularisation of order 0 using
hundred values of λ with λmax = 10∥A∥2 and λmin =
0.1∥A∥−2 in decreasing log-space order.

We compared the ELG signals estimated from
the inverse problem solution with the ELG signals
measured on the heart surface. Whenever the electrode
position did not coincide with the node position, we
selected the node with the smallest Euclidean distance
to the electrode.

We used temporal and spatial cross-correlation as
an ELGs morphologic metric, and we computed the
spatial and temporal relative error to quantify the
differences in the amplitudes of the ELGs. Also, we
calculated the absolute error of the activation times,
estimated as the sample where the smallest ELG
derivative occurs around the QRS complex.

3. Results

Based on the experiment defined in Section 2.4.1, figure
2 shows the behaviour of the solutions versus the values
of λ for a grid of values of group sparsity and α.

From this same experiment, we obtained the
information to compute the last row of 2, which shows
the performance of the error of estimation of the
solutions for the same grid of values.

When the group sparsity was 90 % (see first
column in Figure 2), group 3 showed predominance,
increasing the norm value, while values of λ decreased.
We observed this tendency for three different values
of α. Similar results were observed when the group
sparsity was 50 % and 0 % (second and third columns
in figure 2) with its corresponding groups 0, 2, 3, 4 and
6.

The last row of figure 2 shows the behaviour of
the error computed as a function of λ, using (29). It is
expected that for group sparsity values greater than 50
% the solutions of α = 0 will yield a larger error than
those with the sparse constraint. Conversely, when the
group sparsity is less than of 50 % we observed that the
error decreased when α = 0. In the critical case, group
sparsity 50 %, the magnitude of the error depended on
the value of λ, as we can observe in the middle panel
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of the last row of figure 2.
Comparing the error curves for the cases α = 0.5

and α = 1.0, we observed that the error for α = 1.0 was
always larger than the error corresponding to α = 0.5,
regardless of the group sparsity. However, both curves
differed only by the λ offset. We also observed that,
given a group sparsity, the curves of the norm of the
coefficients for α = 1.0 and α = 0.5 were very similar.

The results obtained from the experiment de-
scribed in Section 2.4.2 are showned in Figure 3(A)
and Table 1.

In figure 3(A), we show the morphological
comparison of four electrograms recovered with
Tikhonov of order 0 and the algorithm presented in
this work with α = 0.95 for Daubechies and for an
implementation based on physiological information.
The physiological dictionary was built using real
electrograms. It showed better high frequency filtering
compared to Tikhonov and Daubechies.

Table 1 presents the 1st, 2nd and 3rd quartiles of
each one of the five metrics for each experiment. These
results are consistent, according to the morphological
similarities observed in Figure 3(A). In general, the
ELGs computed have the half the amplitude of the
ground truth, with its relative errors near one. The
cross correlation values and activation time error
depend on the experiment, but they remain close to
the gold standard.

In addition to the memory and time savings
produced by avoiding the explicit computation of Zγi

,
we observed that the operation complexity to compute
Zγi

u and ZT
γi
v was reduced from O(ppin) to O(p(pi +

n)). For instance, in the case of the dog sinus beat
where p = 140 (torso electrodes), pi = 1321 (heart
nodes of each group) and n = 593 (cardiac beat
lenght), a 400-fold reduction in required operations can
be calculated for both products.

Table 1: Metrics comparison for all experiments. First
column indicates the type of experiment: sinus dog
(SD), paced dog (PD), sinus pig (SP) paced pig (PP)
and paced human (PH ). Second column indicates the
corresponding metric: cross correlation (CC ), relative
error (RE ) and absolute error of the activation times
in samples (EAT ); subscript t stands for temporal and
subscript s stands for spatial. Results are shown as
Q2(Q1-Q3), where Qi is the i-th quartile.

Tkh0 Db2 Phy

SD CCt 0.76(0.61-0.85) 0.76(0.63-0.86) 0.76(0.51-0.89)
CCs 0.43(0.37-0.50) 0.43(0.35-0.49) 0.44(0.39-0.50)
REt 0.86(0.71-0.96) 0.86(0.75-0.97) 0.87(0.73-0.97)
REs 0.90(0.89-0.95) 0.91(0.90-0.97) 0.89(0.88-0.93)
EAT 11.0(6.0-22.0) 11.0(7.5-19.5) 10.0(4.5-16.0)

PD CCt 0.71(0.57-0.82) 0.73(0.52-0.83) 0.78(0.58-0.88)
CCs 0.56(0.45-0.62) 0.56(0.43-0.63) 0.63(0.50-0.66)
REt 0.89(0.77-0.99) 0.91(0.84-0.98) 0.89(0.79-0.97)
REs 0.88(0.87-0.92) 0.90(0.86-0.97) 0.88(0.87-0.92)
EAT 10.5(4.0-15.2) 7.0(2.8-13.2) 7.0(2.0-12.2)

SP CCt 0.85(0.63-0.96) 0.78(0.47-0.89) 0.85(0.40-0.96)
CCs 0.38(0.29-0.55) 0.39(0.29-0.60) 0.39(0.24-0.52)
REt 0.91(0.85-0.97) 0.98(0.95-1.00) 0.99(0.97-1.00)
REs 0.95(0.92-0.96) 1.00(1.00-1.00) 1.00(0.98-1.00)
EAT 16.0(7.8-29.0) 15.0(6.0-30.0) 16.0(6.0-30.0)

PP CCt 0.95(0.85-0.98) 0.92(0.81-0.97) 0.94(0.84-0.98)
CCs 0.61(0.41-0.74) 0.63(0.36-0.72) 0.64(0.46-0.73)
REt 0.72(0.53-0.86) 0.70(0.55-0.89) 0.70(0.55-0.86)
REs 0.85(0.73-0.95) 0.87(0.73-0.98) 0.83(0.74-0.94)
EAT 11.0(5.0-23.0) 19.0(8.0-28.8) 12.0(5.0-22.0)

PH CCt 0.64(0.48-0.83) 0.64(0.49-0.82) 0.62(0.45-0.82)
CCs 0.38(0.27-0.44) 0.29(0.16-0.43) 0.29(0.20-0.41)
REt 0.92(0.68-0.98) 0.93(0.70-0.98) 0.93(0.70-0.98)
REs 0.95(0.91-0.97) 0.98(0.93-1.00) 0.96(0.93-0.98)
EAT 29.0(9.0-52.8) 31.0(12.0-49.0) 29.0(11.0-48.8)
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Figure 2: Graphics showing the 2-norm of each group of coefficients versus λ and the relative errors versus λ. Each
curve is associated with a number indicating the corresponding group. The matrices, with their corresponding
groups, are presented in the last row of this figure. The vertical lines indicate the values of λ for which a group
has a non-zero norm. The rows are parametrized by different values of α (1.0, 0.5 and 0.0) and the columns by
the level of group sparsity (90%, 50% and 0%). The ground truth coefficients are displayed on the last row along
with the relative error curves as a function of λ. All graphs share the same abscissa axis.
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Figure 3: Graphics showing solutions to the experiment of dog sinus beat using the three optimizations under
consideration: Tikhonov (Tkh0), Daubechies with two vanishing moments (Db2), and a physiological dictionary
obtained from real electrograms (Phy). Panel (A) shows four ELGs, one in each row. The first column shows the
morphology of the selected ELG (Recording). The last column presents the spatial location (Electrode Position).
Panel (B) shows the spatial visualization of the activation times (i.e. propagation maps) for the experiment of
the dog sinus beat together with its corresponding ground-truth (Recording).
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4. Discussion

In this work, we present an algorithm with the capacity
to use redundant dictionaries, as well as the possibility
of using different groups of nodes.

The numerical implementation of an algorithm
that operates at acceptable times has been challenging.
To do this we took advantage of the Kronecker
structure of the matrix Z, reducing the memory
required to compute the model. In addition, applying
restrictions on the distribution of groups, we were able
to reduce the complexity of the algebraic operations.
However, despite the applied optimizations, a low-
level implementation was necessary to reduce the
computation times in the algebraic operations.

Tikhonov regularization has several mechanisms
for selecting its optimal hyperparameters such as L-
Curve, CRESO and U-Curve [36]. However, as it was
claimed in [21], in regularizations that include more
than one hyperparameter there are no standard criteria
for selecting them.

In the present work, we have fixed the hyperpa-
rameter α = 0.95 according to the following observa-
tions. On the one hand, the results show that for α ̸= 0
errors have a similar behaviour taking into account an
offset in λ, as it is showned in the last row of Fig-
ure 2. We have taken α ≈ 1 because a the value of
λmax increases as α goes to zero (see 28), generating
a large number of over smoothness and low amplitude
by the predominance of the ℓ2 term. On the other
hand, we have empirically observed a higher speed of
convergence when α ̸= 1.

Likewise, the choice of λ∗ is based on the
maximization of the spatial cross-correlation. We
highlighted that this procedure cannot be used in
applications due to the lack of ground truth. The
criteria used for the selection of hyperparameters
limit the comparison of the regularisations. In this
sense, comparing regularisations taking their optimal
hyperparameters based on some metric would be
a good starting point. But other problems can
appear, such as (the value of) the hyperparameter
that maximizes the temporal cross-correlation may not
coincide with the hyperparameter that maximizes the
spatial cross-correlation.

Table 1 shows that the metrics are low for all
regularizations, including the ECGI gold standard.
These are the most important limitations of the
technique. In this sense, the development of new
regularizations is imperative.

The proposed regularization presents the possi-
bility of using dictionaries built from features with
physiological meaning. For example, we may obtain
dictionaries trained with physiologic data using su-
pervised machine learning algorithms, or more com-
plex wavelets dictionaries without orthogonality re-

strictions. Finally, the algorithm presented in this work
can be also used in other applications where the matrix
in the model has a Kronecker structure.

This work aims to extend two concepts based
on [21]: 1) the advantage of using a more versatile
group distribution than a single group per column, for
example, defining groups with nearby nodes. 2) The
possibility of using any type of dictionary, without
the restriction of a tight frame. This may allow to
incorporate more physiological temporal information
into the regularisation.

5. Conclusion

We efficiently implemented an optimisation algorithm
to solve the group lasso problem plus the Tikhonov
term for models with the Kronecker structure. We
developed an algorithm that supports the use of
arbitrary dictionaries to obtain solutions and allows
flexible group distributions.

6. Declaration of Competing Interest

The authors declare that they have no known
competing financial interests or personal relationships
that could have influenced the work reported in this
study.

Acknowledgments

This work was supported by grants from Consejo Na-
cional de Investigaciones Cient́ıficas y Técnicas (CON-
ICET), Universidad de Buenos Aires (UBA), Univer-
sidad Nacional de La Plata (UNLP), and Agencia Na-
cional de Promoción Cientıfica y Tecnológica (MIN-
CyT), all of them from Argentina.

P.D. Arini and S.F. Caracciolo work was sup-
ported by grants UBACyT 20020130100485BA, MIN-
CyT PICT 2145-2016, and CONICET PIP 112-
20130100552CO.

C. F. Caiafa was partially supported by grants
PICT 2017-3208, PICT 2020-SERIEA-00457, UBA-
CYT 20020190200305BA and UBACYT 20020170100192BA.
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[25] Kovačević J, Chebira A. An Introduction to
Frames. Foundations and Trends® in Sig-
nal Processing. 2008 Oct;2(1):1-94. Avail-
able from: https://www.nowpublishers.com/

article/Details/SIG-006.

[26] Tseng P. Convergence of a Block Coordinate
Descent Method for Nondifferentiable Minimiza-
tion. Journal of Optimization Theory and Appli-
cations. 2001 Jun;109(3):475-94. Available from:
https://doi.org/10.1023/A:1017501703105.

[27] Hastie T, Tibshirani R, Wainwright M. Statisti-
cal Learning with Sparsity: The Lasso and Gen-
eralizations. 1st ed. Boca Raton: Chapman and
Hall/CRC; 2015.

[28] Behnel S, Bradshaw R, Citro C, Dalcin L,
Seljebotn DS, Smith K. Cython: The Best of Both
Worlds. Computing in Science Engineering. 2011
Mar;13(2):31-9. Conference Name: Computing in
Science Engineering.

[29] Blackford LS, Pozo R, Al E. An Updated
Set of Basic Linear Algebra Subprograms
(BLAS). Acm Transactions on Mathemat-
ical Software. 2002 May;(2):135-51. Last
Modified: 2021-10-12T11:10-04:00. Available

from: https://www.nist.gov/publications/

updated-set-basic-linear-algebra-subprograms-blas.

[30] Virtanen P, Gommers R, Oliphant TE, Haberland
M, Reddy T, Cournapeau D, et al. SciPy 1.0:
fundamental algorithms for scientific computing
in Python. Nature Methods. 2020 Mar;17(3):261-
72. Available from: https://www.nature.com/

articles/s41592-019-0686-2.

[31] Harris CR, Millman KJ, van der Walt SJ,
Gommers R, Virtanen P, Cournapeau D,
et al. Array programming with NumPy. Na-
ture. 2020 Sep;585(7825):357-62. Available
from: https://www.nature.com/articles/

s41586-020-2649-2.

[32] Aras K, Good W, Tate J, Burton B, Brooks
D, Coll-Font J, et al. Experimental Data
and Geometric Analysis Repository - Edgar.
Journal of electrocardiology. 2015;48(6):975-81.
Available from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4624576/.

[33] Cignoni P, Callieri M, Corsini M, Dellepi-
ane M, Ganovelli F, Ranzuglia G. Mesh-
Lab: an Open-Source Mesh Processing Tool.
The Eurographics Association; 2008. Ac-
cepted: 2014-01-27T16:30:16Z. Available from:
https://diglib.eg.org:443/xmlui/handle/

10.2312/LocalChapterEvents.ItalChap.

ItalianChapConf2008.129-136.

[34] Betcke T, Scroggs MW. Bempp-cl: A fast Python
based just-in-time compiling boundary element
library. Journal of Open Source Software. 2021
Mar;6(59):2879. Available from: https://joss.

theoj.org/papers/10.21105/joss.02879.

[35] Oostendorp TF, van Oosterom A, Huiskamp
G. Interpolation on a triangulated 3D sur-
face. Journal of Computational Physics.
1989 Feb;80(2):331-43. Available from:
http://www.sciencedirect.com/science/

article/pii/0021999189901034.

[36] Chamorro-Servent J, Dubois R, Coudière Y. Con-
sidering New Regularization Parameter-Choice
Techniques for the Tikhonov Method to Im-
prove the Accuracy of Electrocardiographic Imag-
ing. Frontiers in Physiology. 2019;10. Avail-
able from: https://www.frontiersin.org/

articles/10.3389/fphys.2019.00273/full.

Page 13 of 13 AUTHOR SUBMITTED MANUSCRIPT - BPEX-102836.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1007/s11517-018-1831-2
https://doi.org/10.1007/s11517-018-1831-2
https://doi.org/10.1007/s11517-016-1595-5
https://doi.org/10.1007/s11517-016-1595-5
https://www.nowpublishers.com/article/Details/SIG-006
https://www.nowpublishers.com/article/Details/SIG-006
https://doi.org/10.1023/A:1017501703105
https://www.nist.gov/publications/updated-set-basic-linear-algebra-subprograms-blas
https://www.nist.gov/publications/updated-set-basic-linear-algebra-subprograms-blas
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624576/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624576/
https://diglib.eg.org:443/xmlui/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136
https://diglib.eg.org:443/xmlui/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136
https://diglib.eg.org:443/xmlui/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136
https://joss.theoj.org/papers/10.21105/joss.02879
https://joss.theoj.org/papers/10.21105/joss.02879
http://www.sciencedirect.com/science/article/pii/0021999189901034
http://www.sciencedirect.com/science/article/pii/0021999189901034
https://www.frontiersin.org/articles/10.3389/fphys.2019.00273/full
https://www.frontiersin.org/articles/10.3389/fphys.2019.00273/full

