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Resumen / El objetivo de este trabajo es investigar si un agujero negro puede estar presente en un universo que
atraviesa una fase de contracción, rebote y expansión. Para ello, modelamos una inhomogeneidad embebida en
universo de Friedmann-Lemâıtre-Robertson-Walker mediante la métrica generalizada comovil de McVittie, la cual
tiene en cuenta la interacción de la masa central con el fluido cosmológico. Calculamos los horizontes atrapados,
regiones espacio-temporales y determinamos la estructura de los conos de luz. Del análisis de la estructura causal
concluimos que el agujero negro sobrevive al rebote y continúa su existencia en la fase de expansión. Esto implica
que los modelos cosmológicos de rebote permiten la existencia de agujeros negros en todas las fases del universo,
y a su vez que los agujeros negros provenientes de la época de contracción podŕıan jugar algún rol en la etapa de
expansión.

Abstract / We analyze whether a black hole could exist and persist in a universe that goes through a phase of
contraction, bounce and subsequent expansion. To this end, we investigate the comoving generalized McVittie
metric that represents an inhomogeneity embedded in Friedmann-Lemâıtre-Robertson-Walker universe and allows
interaction with the cosmic fluid. We compute the trapping horizons, spacetime regions and determine the light
cone structure. The analysis of the causal structure leads us to conclude that a dynamical black hole survives
the cosmological bounce and continues to exist in the expanding phase of the universe. This result implies that
bouncing cosmologies admit black holes at all epochs and that these black holes might play some role in the
expanding phase of the universe.
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1. Introduction

Though the ΛCDM model is the most successful cos-
mological model up to date, being able to explain most
of the available data Planck Collaboration et al. (2020);
Ade et al. (2016), it is deficient in several aspects. One
of its major problems is the initial cosmological singu-
larity. Bouncing cosmologies provide an alternative to
overcome this problem. In these models the universe
contracts from a very diluted phase and then smoothly
evolves into a bounce that leads to the current expan-
sion epoch as described by the ΛCDM model. As the
universe contracts, the temperature and density increase
erasing all structure in the process. Black holes, how-
ever, might survive the bounce and play some role in
the subsequent expanding phase of the universe.

The survival of black holes to a cosmological bounce,
however, is unclear. Some authors have explored the
problem using different approaches (Carr & Coley, 2011;
Clifton et al., 2017; Gorkavyi & Tyul’bashev, 2021).
Since black holes are essentially spacetime regions with
a particular curvature, the global evolution of the uni-
verse should affect their horizons, especially close to a
bounce. The whole process is dynamical, and hence can-
not be investigated using the standard static solutions.

In a previous series of works Pérez et al. (2021a,b)
we considered the evolution of the McVittie metric be-
fore, during, and after a cosmic bounce and showed that
although the metric describes a black hole in the past of

the bounce, the trapping horizon disappears close to it,
when it merges with the cosmic horizon. In the McVittie
metric, however, the central mass does not interact with
the cosmic fluid (its mass remains constant), a situation
that does not seem realistic. In this work, we deal with
this problem and we investigate a black hole described
by a generalized McVittie metric. These solutions are
able to represent the interaction of the central object
with the cosmic fluid and evolve with the universe.

2. Scale factor of the bouncing cosmological
model

There are many mechanisms that could generate a cos-
mological bounce, either by classical or quantum effects.
Novello & Bergliaffa (2008). We choose a scale factor
that was derived by Celani and collaborators (Celani
et al., 2017) considering quantum corrections to the clas-
sical evolution of the scale factor Pinto-Neto & Fabris
(2013). It has the form

a(T ) = ab

[
1 +

(
T

Tb

)2
]1/3

. (1)

Here, T is the cosmic time and Tb fixes the bounce time
scale, where 10−41 s < Tb < 10−4 s Frion et al. (2020).
We adopt a value close to the upper limit (Tb = 10−4 s),
so we consider a classical bounce for simplicity.
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3. Comoving Generalized McVittie spacetime

The McVittie metric (McVittie, 1933) is a solution
of Einstein field equations that describes an inhomo-
geneity embedded in a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) cosmological background. This solu-
tion was later generalized by Faraoni & Jacques (2007).
The corresponding line element in isotropic coordinates
(T, r, θ, φ) reads

ds2 = −

[
1− Gm(T )

2c2r

]2
[
1 + Gm(T )

2c2r

]2 c2dT 2 (2)

+ a(T )2
[
1 +

Gm(T )

2c2r

]4 [
dr2 + r2dΩ2

]
.

Here, dΩ2 = dθ2 + sin2 θdφ2, a(T ) is the scale factor
of the cosmological background model and m(T ) is a
function that depends on the cosmic time T .

In this work, we focus on a particular class of gener-
alized McVittie models that corresponds to the choice
m(T ) = m0, where m0 is a constant. Under this pre-
scription, the line element (2) is

ds2 = −
[
1− Gm0

2c2r

]2[
1 + Gm0

2c2r

]2 c2dT 2 (3)

+ a(T )2
[
1 +

Gm0

2c2r

]4 [
dr2 + r2dΩ2

]
.

This metric is usually referred as Comoving Gener-
alized McVittie (CGMcV) spacetime. In the limit
a(T ) → 1, the Schwarzschild metric in isotropic coor-
dinates is recovered, and if m0 → 0, we obtain the
Friedmann-Lemâıtre-Robertson–Walker (FLRW) cos-
mological spacetime.

In order to determine whether the metric (3) repre-
sents a black hole that exists and survives in a universe
that goes through a cosmological bounce, a full anal-
ysis of the causal structure of the spacetime is neces-
sary. This includes studying the existence of trapping
horizons, the determination of regular trapped and anti-
trapped regions, and the computation of the trajectories
of ingoing and outgoing radial null geodesics.

Trapping horizons are defined as the surfaces where
null geodesics change their focusing properties Hayward
(1994). Mathematically, these horizons are determined
by the condition θinθout = 0 where θin (θout) stands for
the expansion of ingoing (outgoing) radial null geodesics
with tangent field na (la). Spacetime regions can be
classified as:
� Regular if θinθout < 0.
� Anti-trapped if θinθout > 0, where θin > 0 and θout >

0.
� Trapped if θinθout > 0, where θin < 0 and θout < 0.

Trapped regions are a key feature that allow to identify
the presence of a black hole Hayward (1994): in the
trapped region of a black hole ingoing and outgoing null
rays are converging and remain confined and enclosed
by a horizon.

The expansion of the null vector la (na) when
the geodesic to which it is tangent is not necessarily
affinelly-parametrized can be computed using the ex-
pression Faraoni (2015)

θout =

[
gab +

lanb + nalb

(−ncldgcd)

]
∇alb, (4)

θin =

[
gab +

lanb + nalb

(−ncldgcd)

]
∇anb. (5)

The analysis of the causal structure is much simpler
if performed in Painlevé-Gullstrand (PG) coordinates
(t̃, r̃, θ, φ). Under this coordinate transformation, the
line element (3) now takes the form?

ds2 = a2(t̃, r̃)ds̃2, (6)

ds̃2 = −c2
(

1− 2Gm0

c2r̃

)
dt̃2 + 2 c

√
2Gm0

c2r̃
dt̃dr̃

+ dr̃2 + r̃2dΩ2. (7)

3.1. Trapping horizons

The outgoing (ingoing) radial null geodesic congruence
of (7) have tangent fields (Nielsen & Visser, 2006):

lµ =

(
1

c
, 1−

√
2Gm0

c2r̃
, 0, 0

)
, (8)

nµ =

(
1

c
,−1−

√
2Gm0

c2r̃
, 0, 0

)
. (9)

We use these two vectors to calculate θout and θin. In
terms of the scale factor given by (1), the dimensionless
cosmic time T̄ ≡ T/Tb and x ≡ r̃/rg (rg ≡ Gm0/c

2),
the expansions take the form

θl =
2

rg x

f1(x) + g(T̄ , x)

1 +

√
2
x

f2(x)

 ,
θn =

−2

rg x

f2(x) + g(T̄ , x)

−1 +

√
2
x

f1(x)

 .
g(T̄ , x) =

2 rg x

3 c

T̄

Tb

1(
1 + T̄ 2

)4/3 ,
f1(2)(x) = 1∓

√
2

x
.

We show in Fig. 1 a plot of the location of the trap-
ping horizons and the different spacetime regions.

3.2. Radial null geodesics and light cones

We obtain the equation that determines the trajectories
of outgoing and ingoing radial null geodesics by setting

d̃s
2

= 0 and dθ = dφ = 0

dx

dT̄

∣∣∣∣
±

=
c Tb
a(T̄ )rg

(
±1−

√
2

x

)
, (10)

?Notice that there are two intermediate coordinate trans-
formations: (T, r, θ, φ) → (T, r̃, θ, φ), isotropic to radius co-
ordinate; (T, r̃, θ, φ) → (τ, r̃, θ, φ), cosmic time to conformal
time, and then to PG coordinates.
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Figure 1: The blue and red lines indicates the conditions
θout = 0 and θin = 0, respectively. The dashed green line
denotes the surface r̃ = 2rg. The trapped regions are painted
in light blue, the anti-trapped are coloured in light pink and
the regular zones are in white. Here, Tb = 10−4 s and m0 =
10 M�.

where the “+” (“−”) corresponds to the outgoing (in-
going) case. We integrate this equation and show the
result in Fig. 2. The dotted curves represent the null
ingoing geodesics while the dashed curves the null out-
going ones. The grey shadow regions show some light
cones and the black arrow indicates the local future di-
rection.

The trajectories of ingoing radial null geodesics have
a negative slope for all values T̄ and x. Those ingoing
null rays that go through the surface x = 2, end up at
the singular surface x = 0. These geodesics can cross
the surface x = 2 in only one way: from x > 2 to x < 2
since the region enclosed by x = 2 is trapped.

Outgoing null geodesics are expanding in the region
x > 2 for all values of the cosmic time. As they get
closer to x = 2, the slope of the trajectories becomes
smaller and in the limit x → 2, the slope goes to zero.
In the trapped region (x < 2), the slope of outgoing null
rays is negative and these geodesics are interrupted at
the singularity.

The light cone structure makes evident that the sur-
face x = 2 acts as a one way membrane behaving
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Figure 2: The dotted (dashed) curves represent the null in-
going (outgoing) radial geodesics. The grey shadow regions
show some light cones and the black arrow indicates the fu-
ture direction. Here, Tb = 10−4 s and m0 = 10 M�.

like an event horizon that is present at all cosmological
epochs of the universe (contraction, bounce and expan-
sion). Thus, we conclude that the comoving generalized
McVittie spacetime in a bouncing cosmological model
includes a dynamical black hole at all times

4. Conclusions

We have analyzed the causal structure of the comoving
generalized McVittie spacetime in a bouncing cosmolog-
ical model. We have computed the trapping horizons,
spacetime regions, and derived the trajectories of radial
null rays. We have probed that a dynamical black hole
is present at all stages of the cosmic evolution, before,
during and after the bounce.

If black holes survive through a cosmological bounce,
they might play an important role in the subsequent
expanding phase of the universe. For instance, these
surviving black holes might contribute to a fraction of
the total dark matter component or provide the seeds
for the formation of galaxies Carr & Silk (2018); Carr
& Kühnel (2020). Some of these issues will be explored
in a future work.
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