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Highlights

• Acquire sEMG signals underwater based on waterproof the electrode.

• Generate a four-dimensional tensor by wavelet transform.

• Extract features of underwater signals using tensor decomposition.
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Abstract

Amputees have limited ability to complete specific movements because of the loss of hands. Prosthetic hands can help amputees
as an effective human-computer interaction system in their daily lives, and some amputees need to use the prosthetic hands for
underwater operations. Therefore, it is necessary to solve the problem of using prosthetic hands underwater. There are two main
problems in underwater surface Electromyogram (sEMG) signal recognition. The underwater sEMG signals are disturbed by noise,
and the traditional sEMG features are easily affected by noise, decreasing the recognition accuracy of underwater sEMG signals.
It is difficult for subjects to acquire quantity training data underwater, and satisfactory sEMG recognition accuracy needs to be
obtained based on small datasets. Tensor decomposition has the advantage of finding potential features of signals, and it is widely
used in many fields. Tucker tensor decomposition was used for feature extraction and recognition of underwater sEMG signals.
Seven subjects were selected to complete four hand gestures underwater and two-channel sEMG signals were collected. Wavelet
transform was applied to generate a three-dimensional tensor and extracted signal features by tensor decomposition. The recognition
accuracy based on K-Nearest Neighbor reaches 96.43%. The results show that the proposed sEMG feature extraction method based
on tensor decomposition helps improve the recognition accuracy of underwater sEMG signals, which provides a basis for applying
prosthetic hands in a water environment.

Keywords: hand gesture recognition, sEMG signals, tensor decomposition, underwater signal acquisition

1. Introduction

The hand plays an essential role in human interaction with
the external environment. The hand can sensitively perceive
changes in environmental information, and it can convey hu-
man emotions through different gestures. More importantly, the5

hand can perform many delicate operations, such as grasping,
pinching, and pushing. Amputees cannot undertake some daily
living activities due to the loss of the hand, which seriously af-
fects their quality of life and has harmful impacts on their lives
and work. Amputees can improve their self-care ability with10

the help of prosthetic hands [1].
The surface Electromyogram (sEMG) signal is the bio-

electrical signal that accompanies muscle contraction, and it re-
flects the level of muscle activity [2]. The sEMG signal can be
obtained by attaching non-invasive electrodes to the skin. The15

sEMG signal is widely used in the clinical and laboratory. The
sEMG signal can be used to monitor human activity for the care
of elderly persons [3]. It is also important for athletes to im-
prove their performance based on the sEMG. The sEMG signal
can be used to evaluate the rehabilitation level of patients [4].20
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Solé-Casals)

1Jianing XUE and Zhe SUN contributed equally to the work.

The sEMG signal of the forearm can be used to recognize
hand gestures, which is widely used in human-computer in-
teraction. For amputees, the sEMG signal of the forearm can
also reflect their hand movement intention. The sEMG signal
is ideal control signals for artificial prosthetic hands. Amputees25

can control prosthetic hands based on the sEMG signal accord-
ing to their movement intention, and they can use prosthetic
hands to replace part of hand functions in daily life [5].

Amputees need to use the prosthetic hands for a long time
in their daily life, which requires the prosthetic hands could be30

used underwater. However, there are currently two problems in
the application of prosthetic hands underwater. The traditional
feature extraction methods are unsuitable for sEMG signal col-
lected underwater and have adverse effects on recognizing un-
derwater sEMG signal. It is difficult for amputees to collect35

quantity sEMG signals, which leads to the limitation of the size
of the dataset and has an impact on the recognition of hand ges-
tures. It is necessary to propose a novel feature extract method.

Currently, the Ag/AgCl electrode is widely used in labora-
tory and clinical, and it is considered the gold standard in col-40

lecting sEMG signal [6]. The Ag/AgCl electrode is a kind of
wet electrode. It has a hydrogel layer at the electrode-skin
interface, which reduces the skin-electrode impedance to im-
prove the signal quality [7]. The flexible fabric electrode is
also used to collect sEMG signal. For instance, a silver-plated45

knitted electrode is proposed for the user’s comfort in daily life
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[8]. Traditional sEMG electrodes are not suitable for underwa-
ter sEMG signal acquisition. Our existing research proposed
a flexible waterproof electrode based on conductive silicone to
collect sEMG signals underwater [9]. Our existing research has50

verified the underwater sEMG signal acquisition performance
of the proposed electrode [10].

It is meaningful to obtain helpful information of raw sEMG
through feature extraction [11]. The sEMG features mainly
include time-domain, frequency-domain, and time-frequency55

features [12]. Krasoulis et al. used the time-domain fea-
tures, which were the Mean Absolute Value (MAV), Wave-
form Length, 4th-order Auto-Regressive coefficients, and Log-
Variance [13]. Zhang obtained four features to characterize the
sEMG signals, and the features were MAV, Standard Deviation60

(SD), SD of the frequency-domain, and Wavelet Transform co-
efficient [14]. Pizzolato et al. extracted five features for sig-
nal recognition: Root Mean Square (RMS), Histogram features,
and other features [15].

There are many studies on sEMG signal recognition. Samuel65

et al. proposed three novel time-domain features. The recogni-
tion accuracy of upper-limb motions based on Linear Discrim-
inant Analysis (LDA) reaches 92.00% ± 3.11% [16]. Hu et
al. introduced a novel attention-based hybrid Convolutional
Neural Network and Recurrent Neural Network model. The70

sEMG recognition accuracy based on the proposed method is
higher than that based on the state-of-the-art method [17]. Shi
et al. used K-Nearest Neighbors (KNN) for hand gesture online
recognition [18]. Qi et al. used the General Regression Neural
Network for nine hand gesture recognition [19].75

Tensor decomposition can extract potential features of sig-
nals, and it is an important tool for multi-dimensional data
analysis. It has been widely used in data mining, signal pro-
cessing, image recognition, and other fields [20]. Currently,
commonly used tensor decomposition methods include CAN-80

DECOMP/PARAFAC (CP) decomposition [21]and Tucker de-
composition [22].

To improve the recognition accuracy of underwater sEMG
signals, this paper proposes a feature extraction method of
sEMG signals through Tucker decomposition. The contribu-85

tions of this paper mainly include the following three aspects:

• Propose the feature extraction method based on tensor de-
composition and a method for determining the size of the
core tensor;

• Compare the recognition accuracy of hand gestures based90

on tensor decomposition and that based on the traditional
sEMG features in the normal environment;

• Prove that the features based on Tucker decomposition can
effectively improve the recognition accuracy of underwa-
ter hand gestures.95

The structure of this paper is as follows. Section II introduces
the process of the sEMG signal acquisition. Section III illus-
trates the method of feature extraction and recognition. Section
IV presents the experimental results. Section V discusses the
experimental results. Finally, section VI summarizes the con-100

clusions and future work.

2. Signal Acquisition

The sEMG signals are collected in the normal and water en-
vironments. This section presents the basic information for
sEMG acquisition experiments.105

The Ag/AgCl electrode requires additional waterproofing
treatment underwater, which greatly limits signal acquisition
and affects the application of sEMG. We have proposed a flex-
ible waterproof electrode for sEMG signal acquisition under-
water, and previous works have confirmed that it is feasible to110

collect sEMG signals in the normal environment and in the wa-
ter environment.

Two-channel sEMG signals have been collected based on the
conductive silicone electrode in our previous study [10]. The
same sEMG signal data is also used in this paper.115

The signal acquisition equipment was the TeleMyo DTS
from Noraxon, and the signal acquisition frequency was 1500
Hz. Seven healthy subjects (23.6 ± 1.4) were selected to col-
lect sEMG signals. All subjects understood the experimental
process, and they signed informed consent.120

The sEMG waterproof electrodes were fixed in the belly of
the flexor carpi radialis and extensor carpi ulnaris [23]. Each
subject collected 15 trials sEMG signals in the normal environ-
ment and in the water environment. The normal environment
was our daily living environment. In the water environment,125

the water was freshwater without unfiltered, and the subject’s
forearm was 10 cm below the water’s surface.

In a trial of the sEMG acquisition, the subject performed four
hand gestures, including hand close (HC), hand open (HO),
wrist flexion (WF), and wrist extension (WE), in sequence.130

Each gesture lasted for 5 seconds, there was a 5 second relax-
ation time between the two gestures, and the signal acquisition
time was 40 seconds in a trial.

3. Method

Signal recognition is important for the application of sEMG135

signals. This section introduces the method of sEMG signal
feature extraction and recognition.

3.1. Framework of sEMG Signal Recognition

In order to realize the recognition of sEMG signals collected
underwater, this paper proposes an sEMG signal recognition140

system based on tensor decomposition, and Fig. 1 is the com-
plete framework. It mainly consists of three parts: signal acqui-
sition, feature extraction, and recognition.

The sEMG signal acquisition is carried out in the normal and
the water environments, respectively. The sEMG signals are145

divided into a training set and a test set according to the order
of acquisition. In the application of the sEMG, multiple trials
of sEMG signals are collected as the training set for training the
recognition model at first, and then the trained model is used to
recognize the test set.150

Three kinds of methods are selected for feature extraction.
The time-domain and the frequency-domain features are com-
monly used in numerous studies. The tensor decomposition is
proposed to extract features. At first, create a tensor based on
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Figure 1: The framework of sEMG signal recognition.

the sEMG signals, and then obtain features by Tucker decom-155

position. It is noted that the features based on tensor decom-
position have high dimensions and are not suitable for direct
recognition by machine learning methods. A feature selection
method is used to reduce the dimensionality of the features.

KNN is a traditional machine learning method that is highly160

interpretable, easy to understand, and easy to implement. Due
to the high degree of aggregation of sEMG features of the
same hand gesture, sEMG signals can be recognized by KNN.
The recognition accuracy of hand gestures based on the neu-
ral network is related to the initial weights of the network, and165

the recognition results have certain randomness. In contrast,
the recognition accuracy by KNN is only related to the data
set. Choose KNN to recognize sEMG signals, and compare
the recognition accuracy based on traditional sEMG features
and that based on the tensor decomposition features to evalu-170

ate the performance of the proposed feature extraction method.
Some recognition methods are selected to recognize sEMG sig-
nals, including Support Vector Machine (SVM), Random For-
est(RF), Decision Tree(DT), and LDA.

3.2. Time-Domain Features175

Time-domain features are widely used because of their low
computational complexity. They are extracted from raw sEMG
signals and mainly correspond to the signal amplitude. Four
time-domain features are selected. The length of a segment for
feature extraction is 200 ms.180

RMS reflects the average amplitude of sEMG signals, and it
is related to the force of muscle flexion or extension.

RMS =

√√√
1
N

N∑

i=1

xi
2 (1)

where xi is a segment of the sEMG signals; and N is the length
of a segment.185

MAV also reflects the level of muscle activities, and it is the
mean absolute value of the sEMG signals.

MAV =
1
N

N∑

i=1

|xi| (2)

VAR reflects the variance of the sEMG signals.

VAR =
1

N − 1

N∑

i=1

(xi − x̄)2 (3)190

Zero Crossing (ZC) is the number of changes for the sign of
signals [24].

ZC =

N−1∑

i=1

sgn (−xixi+1) (4)

The sEMG time-domain feature normalization is performed
through Log Transformation. Features based on Log Trans-195

formation have a more symmetrical distribution shape and a
smaller range than raw features, which are more helpful for
recognition. Furthermore, the Log Transformation reduces the
influence of outliers on the recognition results.

3.3. Frequency-Domain Features200

Four kinds of features are selected as the frequency-domain
features. The length of a segment for calculating frequency fea-
tures is 200 ms. Log Transformation is used to obtain features
based on the raw frequency-domain features.

Median Frequency (MDF) is defined as the frequency for205

which the following condition is met [25]:
∫ MDF

0
psd ( f ) d f =

∫ M

MDF
psd ( f ) d f (5)

where psd( f ) is the Power Spectral Density (PSD); and M is the
maximum frequency. The PSD of the sEMG signals is obtained
based on the welch method with the hanning window.210

Peak Frequency (PKF) is the frequency corresponding to the
peak of the PSD, which reflects the main frequency of the power
spectrum of the sEMG [26].

PKF = argmax (psd ( f )) (6)

Mean Frequency (MNF) refers to the average frequency of215

the sEMG [27].

MNF =

∫ M

0
f psd ( f ) d f

∫ M

0
psd ( f ) d f

(7)

Mean Power (MNP) refers to the average power of the sEMG
based on the frequency [28].

MNP =

∫ M

0
psd ( f ) d f

M
(8)220
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3.4. Features based on Tensor Decomposition

Single-dimensional features only in the time or frequency do-
main are not enough to reflect the information of the sEMG sig-
nals collected in different environments. Tensor decomposition
is an excellent method for analyzing high-dimensional signals.225

Tensor decomposition is utilized for multi-domain sEMG fea-
ture extraction.

3.4.1. Tensorization
Tensor is a generalization of matrix, and it is regarded as a

multi-index array. Tensorization is the process of creating a230

data tensor [29]. The tensor can be created by rearranging low-
dimensional data. A mathematical method can transform data
to a tensor, such as Wavelet Transform. Finally, some multi-
domain data also can naturally be regarded as a tensor.

The sEMG signal is a two-dimensional signal based on the235

temporal and spatial domains. The frequency-domain infor-
mation is the important feature of the sEMG, and the Wavelet
Transformation is used to obtain it. Then a third-order tensor
based on the frequency domain, the temporal domain, and the
spatial domain is obtained. This process is called sEMG signal240

tensorization.
A tensor based on the two-channel sEMG signals is created.

The size of raw sEMG signals is 60000 × 2 × 15 (temporal ×
spatial × trial). The sEMG signals in the middle 3 seconds of
each gesture are selected for recognition, and the data size is245

18000 × 2 × 15 (temporal × spatial × trial). In order to extract
features, the sEMG signals are divided into 900 segments, each
segment is the sEMG signals of 200 ms, and signals are ob-
tained of which size is 300 × 2 × 900 (temporal × spatial × rep-
etitions). The signals are transformed into the time-frequency-250

domain signals by Morlet Wavelet Transform. The sEMG ten-
sor is obtained with a size of 75 × 75 × 2 × 900 (spectral ×
temporal × spatial × repetitions).

3.4.2. Tensor Decomposition
The three-order tensor is taken as an example, where the raw255

tensor is approximated by the product of a core tensor and factor
matrices. The raw tensor X ∈ RI1×I2×I3 can be expressed as:

X � G ×1 U(1) ×2 U(2) ×3 U(3) (9)

where G ∈ RR1×R2×R3 is the core tensor; U(1) ∈ RI1×R1 ,
U(2) ∈ RI2×R2 , and U(3) ∈ RI3×R3 are the factor matrices; and260

×n(n = 1, 2, 3) is the mode-n product of tensor and matrix. The
core tensor G has a lower dimension than X. The scalar repre-
sentation of Tucker decomposition is:

xi1i2i3 =

R1∑

r1=1

R2∑

r2=1

R3∑

r3=1

gr1r2r3 u(1)
i1r1

u(2)
i2r2

u(3)
i3r3

(10)

where, xi1i2i3 is the X element; gr1r2r3 is the G element; and u(1)
i1r1

,265

u(2)
i2r2

, and u(3)
i3r3

are the element of the U(1), U(2), and U(3).
The hand gesture recognition based on Tucker decomposi-

tion is shown in Fig. 2 [30]. Three-order Tucker decomposition
is applied to the first three dimensions of the four-order sEMG

tensor that is equivalent to 900 third-order sEMG tensors. Each270

third-order sEMG tensor in the training set Xtr approximates
the product of the core tensor and factor matrix by Tucker de-
composition, ensuring that 600 sEMG tensors in the training
set obtain the same factor matrix through tensor decomposition,
and the factor matrix is the basic factor matrix U(n)(n = 1, 2, 3).275

According to the basic factor matrix, the corresponding core
tensors Gtr can be obtained. The test features Gte can be ex-
tracted based on the test set Xte and the basic factor matrix.
Tucker factors matrix must be fixed for all repetitions, and only
the core tensor is computed for each sEMG tensor [31].280

The size of the core tensor has an important influence on the
recognition results. The appropriate size of the core tensor is
different based on different signals and different classifiers. To
determine the size of the core tensor, the 5-fold cross-validation
method is used to obtain the recognition accuracy of the training285

set based on the different sizes of the core tensor.

3.4.3. Feature Discriminant
The features obtained by the Tucker decomposition are re-

dundant, and the Fisher discriminant analysis is used for the
dimensionality reduction.290

The method of Fisher discriminant analysis is used to obtain
the score of features [32], and a high score of a feature means
that the feature provides more information for recognition. Pre-
serve the top n features with the highest scores and propose a
method to determine a suitable n. The score of the nth feature295

is significantly lower than that of the (n − 1)th feature, but its
score is not significantly higher than the score of the (n + 1)th

feature. The information contained in the (n + 1)th feature is
thought to be redundant. The top n features are selected as the
final features. The method is expressed as follows:300

s(n − 1) − s(n) ≥ Thre (11)

s(n) − s(n + 1) < Thre (12)

where s(n) is the score of the nth feature; Thre is the threshold
for judging whether the scores of two features are significantly
different. If the score of the nth feature satisfies equation 11 and305

equation 12, the top n features are reserved as the features of
the sEMG signals. To determine the appropriate threshold, the
5-fold cross-validation method is used to obtain the recognition
accuracy of the training set based on different thresholds.

4. Results310

The sEMG signals were collected in a normal environment
and a water environment. Three kinds of features were ex-
tracted based on time-domain, frequency-domain, and tensor
decomposition. The machine learning methods were used to
perform hand gesture recognition.315

4.1. Recognition in a Normal Environment

The recognition model is trained based on the training set and
the recognition accuracy is obtained based on the test set. The

4

                  



( ) ( ) ( )× × ×
× {U }

Fisher 

Linear 

Discrimination

Training set: (N+1) order

Test set: N order

Training 

features

Test 

features

Classifier

WE

WFWF

HCHC

HO

Figure 2: Hand gestures recognition based on Tucker decomposition.

Table 1: Recognition in a Normal Environment Based Time-Domain Features
(%)

Method KNN SVM RF DT LDA
Subject 1 86.00 85.33 89.00 85.67 84.67
Subject 2 97.33 97.67 96.00 95.33 99.33
Subject 3 99.33 99.33 96.67 94.33 99.33
Subject 4 96.67 97.00 97.67 98.00 97.33
Subject 5 96.00 95.33 95.67 95.00 96.33
Subject 6 91.00 92.00 91.67 88.33 92.33
Subject 7 99.33 99.33 99.67 97.67 99.00
Average 95.09 95.14 95.19 93.48 95.47

Table 2: Recognition in a Normal Environment Based Frequency-Domain Fea-
tures (%)

Method KNN SVM RF DT LDA
Subject 1 83.00 85.00 88.67 78.67 85.00
Subject 2 95.67 97.67 98.33 94.00 96.00
Subject 3 96.33 96.67 96.33 96.33 96.67
Subject 4 97.00 97.33 95.67 94.67 97.00
Subject 5 93.33 95.33 94.67 95.00 96.33
Subject 6 88.00 90.67 89.00 88.00 92.67
Subject 7 98.67 99.67 96.33 97.33 98.67
Average 93.14 94.62 94.14 92.00 94.62

results determine whether the tensor decomposition is suitable
for recognizing sEMG collected in a normal environment.320

Based on the time-domain features, the average recognition
test accuracy of KNN is 95.09%. It can be found that the hand
gesture recognition accuracy based on different machine learn-
ing methods is similar except based on DT.

Based on the frequency-domain features, the recognition ac-325

curacy by KNN is 93.14%, and the results of recognizing hand
gestures by other classifiers are shown in Table 2. The recog-
nition accuracy based on SVM and that based on LDA are the
highest, and the recognition accuracy based on DT is the lowest.

According to the recognition accuracy of the training set,330

for the sEMG collected in the normal environment, the size of
the core tensor and the threshold based on different classifiers
are shown in Table 3. As shown in Table 4, the recognition
accuracy based on tensor decomposition features by KNN is

Table 3: The Size of the Core Tensor and the Threshold in the Normal Environ-
ment

Method Core size Threshold
KNN 14 × 13 × 2 0.0012
SVM 13 × 16 × 2 0.0001
RF 20 × 19 × 2 0.0013
DT 9 × 18 × 2 0.0017

LDA 10 × 13 × 2 0.001

Table 4: Recognition in a Normal Environment Based Tensor Decomposition
Features (%)

Method KNN SVM RF DT LDA
Subject 1 89.33 91.00 90.33 88.33 91.00
Subject 2 98.67 98.67 97.67 95.67 96.33
Subject 3 97.33 96.67 97.00 94.67 94.00
Subject 4 98.00 98.00 91.67 95.67 91.33
Subject 5 99.67 99.67 98.67 98.33 98.33
Subject 6 94.67 94.33 90.33 87.33 93.00
Subject 7 99.33 99.00 98.33 97.33 97.67
Average 96.71 96.76 94.86 93.90 94.52

96.71%. A satisfactory hand gesture recognition results can be335

obtained based on KNN and SVM.
Using KNN and SVM to recognize hand gestures, the fea-

tures based on tensor decomposition are significantly better
than traditional sEMG features. Using RF, DT, and LDA to rec-
ognize hand gestures, the recognition accuracy based on tensor340

decomposition features is similar to that based on traditional
features. The tensor decomposition features combined with
SVM or KNN can get the highest recognition accuracy.

4.2. Recognition in a Water Environment

The recognition accuracy in a water environment is obtained,345

proving that the tensor decomposition improves the recognition
accuracy for the underwater sEMG signals.

Based on time-domain features, the recognition accuracy by
KNN is 91.86%. The recognition accuracy based on LDA is
highest, and the recognition accuracy based on DT is the lowest.350

Based on the frequency-domain features, the recognition ac-
curacy by KNN reaches 91.43%. Table 6 shows the recognition
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Figure 3: Hand gesture recognition in the normal environment.

Table 5: Recognition in a Water Environment Based Time-Domain Features
(%)

Method KNN SVM RF DT LDA
Subject 1 90.67 91.00 92.00 91.67 94.33
Subject 2 87.67 84.00 76.33 73.00 89.67
Subject 3 97.00 94.67 96.67 94.00 98.00
Subject 4 97.33 97.67 97.67 97.00 99.00
Subject 5 83.33 89.00 86.67 84.33 91.00
Subject 6 87.00 88.00 86.00 89.00 91.67
Subject 7 100.00 100.00 99.67 99.67 100.00
Average 91.86 92.05 90.72 89.81 94.81

results for each subject. As same as based on the time-domain
features, it is challenging to recognize HO based on KNN.

For the sEMG signals in a water environment, the size of355

the core tensor and the threshold are shown in Table 7. The
recognition accuracy by KNN based on tensor decomposition
features is 96.43%. sEMG signals collected underwater can be
accurately recognized by KNN.

Using machine learning methods to recognize hand gestures,360

except LDA, the recognition results based on tensor decomposi-
tion features are significantly better than traditional sEMG fea-
tures. The recognition accuracy by LDA based on tensor de-
composition features is similar to that based on traditional fea-
tures. The tensor decomposition features combined with KNN365

obtain the highest recognition accuracy.

5. Discussion

The results demonstrate that the tensor decomposition is re-
liable for feature extraction. Especially in a water environment,
signal feature can be extracted by the tensor decomposition to370

improve the recognition accuracy.

5.1. Principal Findings

The recognition accuracy decreases underwater compared
with that in a normal environment. The paper speculates on the
reasons for the decline in recognition accuracy. Water fluctua-375

tion decreases the signal quality and signal-to-noise ratio during
the underwater signal acquisition process, which leads to a de-
crease in recognition accuracy. The traditional sEMG features

Table 6: Recognition in a Water Environment Based Frequency-Domain Fea-
tures (%)

Method KNN SVM RF DT LDA
Subject 1 91.00 91.67 91.67 90.00 90.33
Subject 2 84.67 92.00 81.33 77.00 90.33
Subject 3 95.33 97.33 93.00 94.33 99.33
Subject 4 98.00 97.67 98.33 97.67 98.33
Subject 5 84.67 89.33 90.00 83.33 88.67
Subject 6 86.33 89.67 86.67 83.33 91.33
Subject 7 100.00 99.67 99.67 98.33 99.33
Average 91.43 93.91 91.52 89.14 93.95

Table 7: The Size of the Core Tensor and the Threshold in the Water Environ-
ment

Method Core size Threshold
KNN 17 × 10 × 2 0.0002
SVM 15 × 10 × 2 0.0002
RF 18 × 18 × 2 0.001
DT 10 × 15 × 2 0.0019

LDA 19 × 18 × 2 0.0007

are based on raw sEMG signals, and they will be affected if
raw signals contain noise. Traditional feature extraction meth-380

ods are susceptible to noise, such as RMS is easily affected
by noise. The underwater recognition accuracy based on ten-
sor decomposition features is highest. Since tensor decompo-
sition can extract the potential features of the sEMG signals, it
can remove some components produced by noise and preserve385

the components produced by the sEMG signals. The features
extracted by Tucker decomposition are not easily affected by
noise, and it is helpful to improve the underwater sEMG signal
recognition accuracy.

It can be found that HO is easily mistaken based Fig. 5. The390

paper speculates the reason for the low recognition accuracy of
HO. The sEMG of HO has a small amplitude and a low signal
power. The sEMG of HO is easily interfered with by noise, and
the proportion of noise and movement artifacts in the sEMG
increases, resulting in a low recognition accuracy of HO.395

The recognition accuracy of underwater sEMG signals is ef-
fectively improved based on tensor decomposition features by
machine learning methods except for LDA. There is no signifi-
cant difference between the recognition accuracy based on ten-
sor decomposition features and traditional features when select-400

ing LDA as the classifier. Features extraction by tensor decom-
position includes tensor decomposition and feature selection.
It is speculated that because the feature selection method has
similarities with LDA, the advantages of tensor decomposition
cannot be reflected when selecting LDA as the classifier. The405

specific reasons deserve further research.

5.2. Ablation Experiment

The paper further studies the method of extracting sEMG fea-
tures by tensor decomposition. The feature extraction by tensor
decomposition includes two steps: Tucker decomposition and410
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Table 8: Recognition in a Water Environment Based Tensor Decomposition
Features(%)

Method KNN SVM RF DT LDA
Subject 1 95.33 94.33 94.00 93.00 93.33
Subject 2 95.00 91.33 88.33 85.00 92.33
Subject 3 97.67 96.33 91.67 94.33 98.33
Subject 4 99.67 98.33 98.67 96.33 94.67
Subject 5 91.00 90.67 89.67 83.33 91.00
Subject 6 96.67 95.67 90.33 92.33 95.00
Subject 7 99.67 100.00 98.67 98.33 98.67
Average 96.43 95.24 93.05 91.81 94.76
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Figure 4: Hand gesture recognition in the water environment.

feature discrimination. In order to explore the influence of these
two components on the recognition results, an ablation exper-
iment is designed. The recognition accuracy based on KNN
without tensor decomposition or feature discrimination is cal-
culated. Fig. 6(a) and Fig. 6(b) are the experimental results in415

the different environments. The experimental results show that
satisfactory results cannot be obtained without tensor decom-
position or feature discrimination. Valuable features cannot be
extracted only based on feature discrimination method without
tensor decomposition, and the dimension of the core tensor base420

on Tucker decomposition is too large without feature discrimi-
nation, resulting in a decrease in recognition accuracy.

5.3. Limitations and Future Work

Although our proposed method can effectively improve the
recognition accuracy of underwater hand gestures, it also has425

shortcomings. The sEMG feature extraction based on ten-
sor decomposition take more time than traditional sEMG fea-
ture extraction. The computation complexity of extracting
time-domain features is the lowest. Extracting frequency-
domain features requires Fourier transformation first, which in-430

creases the computational cost. The proposed feature extrac-
tion method requires Wavelet Transformation. The time it costs
mainly includes Wavelet Transformation and mode-n product
of tensor and matrix. It is also necessary to spend time obtain-
ing the factor matrix during the training process. In future re-435

search, the sEMG tensor with a smaller dimension by Wavelet

Figure 5: Recognition confusion matrix based tensor decomposition in the wa-
ter environment by KNN.
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Figure 6: Recognition results based tensor decomposition by KNN

Transformation will be obtained, which can reduce the compu-
tation complexity of Wavelet Transformation and the mode-n
product of tensor and matrix.

In future work, the real-time sEMG signals will be collected440

in the water environment. The hand gestures based on sEMG
signals will be recognized in real-time using tensor decomposi-
tion, and it will be used to control the sEMG prosthesis hands.

6. Conclusion

Underwater sEMG signal acquisition and recognition are445

widely needed in numerous fields. In order to solve the problem
of underwater sEMG signal recognition, this paper proposes an
sEMG signal recognition system based on tensor decomposi-
tion. The waterproof electrode was used to collect two-channel
sEMG signals in a water environment. Furthermore, tensor de-450

composition was used to extract features and machine learning
methods were chose to recognize hand gestures. The recogni-
tion accuracy of four hand gestures based on KNN and tensor
decomposition features is 96.43%. Thus, The proposed method
can achieve underwater sEMG signal recognition. In the future,455

more gestures will be recognized.
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