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Abstract
The aim of this paper is to provide an analytical tool, which might improve models in which
the particle-in-a-box approach has been applied and that may be also used when the thin disk
approximation could not be longer appropriate. The dispersion velocity is the root-mean-
square planetesimal, asteroid, or Kuiper belt object velocity with respect to the local mean
circular orbit. This velocity is a function of the object orbital eccentricity and inclination.
We calculate a general expression of the dispersion velocity for the planar case in which
the object’s orbit has no inclination with respect to the local mean circular orbit and for the
spatial case in which it has an inclined orbit. Our general expression of the square of the
dispersion velocity may be expanded around any value of e for the planar and spatial cases,
being in space an exact solution of the orbital inclination i . We expanded our expression
around e = 0 with i = e/2 to study solid accretion rates and collision probabilities. We
find that in the whole range of eccentricities and inclinations, our results are lower than solid
accretion rates and collision probabilities computed by using the expressions of the dispersion
velocity usually adopted in the literature. We apply our expressions of the square of the
dispersion velocity expanded around e=0 and up to sixth order in e in our numerical model
of planetary formation with planetesimal fragmentation and in our model of the collisional
frequency on large asteroids. Our formalism, although generally giving lower values than
previous approximations, validates the formerly used estimates for the applications presented
here. In addition, we calculate the statistical velocity dispersion obtaining a straightforward
expression as a function of the eccentricity.
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1 Introduction

The particle-in-a-box approximation, first developed by Safronov (1972), has been the ana-
lytic approach for calculating the evolution of planetesimals, asteroid belt objects (ABs),
and Kuiper belt objects (KBs) velocities when the number of objects is very large (Wetherill
and Stewart 1993; Ida et al. 2008; Morbidelli et al. 2009; Weidenschilling 2011; Guilera
et al. 2010, 2011, 2014; Chambers 2014; San Sebastián et al. 2019; Beitz et al. 2016). This
approach approximates the relative orbital motions of the bodies with respect to the local
mean circular orbit, with a dispersion velocity which is a function of their orbital eccentricity
e and inclination i . The evolution of e and i is affected by several processes at different
time stages for each scenario. For planetesimals, mainly it increases as a result of mutual
perturbations among planetesimals and the stirring produced by the embryo and decreases
by inelastic collisions, dynamical friction by smaller and leftover planetesimals (as well as
the debris from the collisions between planetesimals and planetary embryos), gas dynamical
friction and by gas drag (Inaba et al. 2001; Chambers 2006; Grishin and Perets 2015).

The best way to study planetesimals, ABs and KBs evolution, is via N-body simulations
(Ida and Makino 1993; Ronco and de Elía 2018) since the dynamics, and therefore, the
velocity dispersion of these objects is not affected only by the first body adjacent to them; it
is affected by the entire population of the disk, i.e., the effect of the entire system should be
included in the simulation at the same time. However, taking into account all the processes
involved together is a very complicated task since N-body simulations when N is very large
may take long calculation times.

In a series of previous works (Guilera et al. 2010, 2011, 2014), we developed a numerical
model that describes the formation of giant planets immersed in a protoplanetary disk that
evolves in time, where the gaseous component evolves by an exponential decay and planets
grow by simultaneous accretion of solids and gas. The solid component of the disk evolves
by planet accretion, radial drift due to nebular drag, and collisional evolution. During the
planetary growth, collisional cascades of small fragments appear as a result of high impact
velocity among planetesimals (Guilera et al. 2014; Chambers 2014). Our disk is divided into
thin radial rings, where the particle-in-a-box approach at each ring is applied. Very recently,
we improved our planetesimal fragmentation model developed in Guilera et al. (2014) incor-
porating several processes and different velocity regimemodels for the calculation of low and
high relative planetesimal velocities (San Sebastián et al. 2019).We computed (San Sebastián
et al. 2019) the solid accretion rate of a protoplanetary embryo considering three different
regimes for the relative velocities and their transitions according to Greenberg et al. (1991),
regime A: dominance by random motion (usually known as dispersion dominated regime);
regime B: dominance by Keplerian shear motion; regime C: Keplerian shear dominance in a
very thin disk. We found (San Sebastián et al. 2019) that planetesimal relative velocities are
quickly increased due to the gravitational perturbations produced by the growing protoplanet
leading to a rapid dominance of regime A. This suggests a revision of the usual expression
of the dispersion velocity valid for larger values of the eccentricities and inclinations.

The conversions between orbital elements and relative velocities in the particle-in-a-box
approximation assume (e, i) << 1 (Safronov 1972; Czechowski et al. 1992; Lissauer and
Stewart 1993). The planetesimal dispersion velocity in the particle-in-a-box approach has
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usually been adopted up to the present in the literature (Wetherill and Stewart 1993; Ida
et al. 2008; Morbidelli et al. 2009; Weidenschilling 2011; Guilera et al. 2010, 2011, 2014;
Chambers 2014; San Sebastián et al. 2019) and is the velocity of a planetesimal relative to the
local mean circular orbit averaged over an epicycle and over a vertical oscillation (Lissauer
and Stewart 1993).

There is a distinction between the cases in which eccentricities and inclinations may be
damped during planet formation in the gas disk, and the gas-free case, when minor bodies are
under study. In the gas-free case (ABs and KBs) eccentricities can grow large. There are also
other problems in planetary science where a dynamical hot disk of planetesimals naturally
appears, such as the formation of the Moon or the Uranian satellites, or the reaccumulation
of material that could form binaries in asteroid collisions. Also, during the violent dynamical
evolution of the giant planets orbits required by the so-called Nice Model (Tsiganis et al.
2005), a large number of primitive trans-Neptunian objects in elongated and inclined orbits
are inserted into the inner Solar System (Gomes et al. 2005; Levison et al. 2009).

The formation and dynamical evolution of ABs and KBs is usually studied using the
particle-in-a-box approximation, where the square velocity of a body relative to another
body in the belt is taken as the sum of the square of the dispersion velocity of both objects
(Stern 1996b, a; Stern and Colwell 1997; Bottke et al. 2005; Morbidelli et al. 2009; Wei-
denschilling 2011; Parisi 2013; Beitz et al. 2016; Parisi et al. 2016). We determined (Beitz
et al. 2016; Parisi et al. 2016) the distribution of the present collision velocities of ABs from
the orbital parameters of ∼ 500,000 asteroids with semiaxis between 2.2 and 3.75 AU pro-
vided by Chamberlin (2008) 1, where we computed the velocity-frequency distribution of
the present ABs as the dispersion velocity using the particle-in-a-box approach, obtaining
that the normalized accumulated asteroid number saturates at collision velocities of ∼ 10km
s−1 (e ∼ 0.5).

In this paper, we calculate a general expression of the dispersion velocity that may be
expanded around any value of the orbital eccentricity, which is an exact function of the
orbital inclination. In Sect. 2, we present the basic equations of the intersection of an elliptical
orbit with the local mean circular orbit. In Sect. 3, the general and complete expression of
the dispersion velocity is calculated, where we compute the relative velocity of an object
circulating the central star on an elliptical orbit with respect to the local mean circular orbit,
for the planar and the spatial cases. The particular case of the statistical velocity dispersion,
where the mean velocity of the object is equal to the local mean circular velocity for the
planar and the spatial cases, is also calculated. In Sect. 4, we expand our expression of the
square of the dispersion velocity around e=0 up to sixth order in e and is compared with the
standard dispersion velocity usually used in the literature for the planar and spatial cases.
The results and applications of Sect. 4 are shown in Sect. 5, where semianalytical results
of accretion rates and collision probabilities are presented in Sect. 5.1, the calculation of
the collision frequency on undifferentiated asteroids is presented in Sect. 5.2, and numerical
results of giant planet formation including planetesimal fragmentation in a gaseous disk are
shown in Sect. 5.3. Finally, the conclusions are presented in Sect. 6.

1 http://ssd.jpl.nasa.gov/dat/ELEMENTS.NUMBR.
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2 Intersection of an elliptical orbit around a central star with the local
mean circular orbit

The basic equations of the orbits of a planetesimal and a protoplanet and their intersection
are here presented, which are applied for the calculation of the dispersion velocity in Sect. 3.
This mathematical formulation is also valid for the intersection of the orbits of ABs or KBs
with the local mean circular orbit.

The equation that describes the elliptical orbit of a body of mass m around its central star
is given by

R = a(1 − e2)

1 + e cosϕ
, (1)

with R the radial distance of the body from its central star, ϕ and e the true anomaly and
the eccentricity of the object’s orbit, and a its semimajor axis. The radial and tangential
components of the object’s orbital velocity are (Murray and Dermott 1999):

Ṙ = R2e sin ϕϕ̇

a(1 − e2)
, (2)

Rϕ̇ = R2(1 + e cosϕ)

a(1 − e2)
ϕ̇. (3)

The circular velocity v0 of the protoplanet M or of the local mean circular orbit of radius
a0 is given by

v0 =
√

G M∗
a0

, (4)

being G the gravitational constant and M∗ the central star mass.
In the intersection of the orbit of m with the local mean circular orbit, we have

a0 = a(1 − e2)

1 + e cosϕ
, (5)

where a may be expressed in the way defined by Czechowski et al. (1992) as a function of
a0

a = a0(1 + ã). (6)

Substituting Eq. (6) into Eqs. (2) and (3), and using the second and the third Kepler’s laws,
we obtain

Ṙ = v0

(1 + ã)1/2

e sin ϕ

(1 − e2)1/2
(7)

Rϕ̇ = v0

(1 + ã)1/2

(1 + e cosϕ)

(1 − e2)1/2
, (8)

with the parameter ã obtained by using Eqs. (6) and (5)

ã = e cosϕ + e2

1 − e2
. (9)

It should benoted that for the encounter to takeplace at R = (a0, ϕ), the object’s semimajor
axis cannot be independent from its eccentricity. If we fix its eccentricity, there is a unique a
allowed, the one given by Eqs. (6) and (9).
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3 Calculation of the dispersion velocity

The object’s orbital velocity in cylindrical coordinates V̄ = (VR, Vϕ, 0) = (Ṙ, Rϕ̇, 0) is
expressed from Eqs. (7) and (8) as

V̄ = v0

(1 − e2)1/2(1 + ã)1/2
(e sin ϕ, 1 + e cosϕ, 0). (10)

At the intersection of the orbits of m and M , substituting Eq. (9) into Eq. (10), we obtain

V̄ = v0

(1 + e cosϕ)1/2
(e sin ϕ, 1 + e cosϕ, 0). (11)

3.1 Planar case

The square of the dispersion velocity between two bodies on co-planar elliptical orbits was
calculated at second order by Czechowski et al. (1992). Following their procedure, we com-
pute the general expression of the dispersion velocity, i.e., the root square of the mean square
velocity vD P of a body m relative to the coplanar circular orbit with radius a0.

In computing the square of the dispersion velocity v2D P = 〈
(V̄ − v̄0)

2
〉
, we first calculate

the square velocity of the planetesimal m relative to the circular orbital velocity of the
protoplanet M .

From Eq. (11), and being v̄0 = (0, v0, 0) the protoplanet coplanar circular velocity in
cylindrical coordinates, we get

(V̄ − v̄0)
2 = v20

[
e2 sin2 ϕ

1 + e cosϕ
+ (

(1 + e cosϕ)1/2 − 1
)2]

. (12)

Since, for the encounter to occur, the planetesimal’s orbit is determined by Eq. (9), the
planetesimal semimajor axis is not independent of its eccentricity. Therefore, the average of〈
(V̄ − v̄0)

2
〉
over one orbital period is carried out as Safronov (1972)

< (V̄ − v̄0)
2 >= 1

2π

∫ 2π

0
(V̄ − v̄0)

2 dϕ. (13)

Then, following Eq. (13), we average Eq. (12)

v2D P = 〈
(V̄ − v̄0)

2〉 = v20

[〈
e2 sin2 ϕ

1 + e cosϕ

〉]
+v20

[〈
((1 + e cosϕ)1/2 − 1)2

〉]
, (14)

where 〈
e2 sin2 ϕ

1 + e cosϕ

〉
= [

1 − (1 − e2)1/2
]
, (15)

and 〈
((1 + e cosϕ)1/2 − 1)2

〉 = 2 − 2
〈
(1 + e cosϕ)1/2

〉
, (16)

with 〈
(1 + e cosϕ)1/2

〉
=

[
1

π
(1 − e)1/2E

(
2e

−1 + e

)
+ 1

π
(1 + e)1/2E

(
2e

1 + e

)]
, (17)
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Fig. 1 The orbital configuration diagram in space. The reference frame is centered at the star and the x-axis
points in the direction of the vernal equinox. The circular orbit of the protoplanet M is in the (x, y) plane.
R is the distance between the planetesimal m and the central star, i is the inclination of the planetesimal’s
orbit with respect to the protoplanet’s orbital plane. r is the distance between the node N and the central star
(r = a0). P is the orbital pericenter of m. The angles �, ω and ϕ are the longitude of the ascending node, the
longitude of the pericenter and the true anomaly, respectively

being E the complete elliptic integral of the second kind. Substituting Eqs. (15), (16), and
(17) in Eq. (14), the two-dimensional square dispersion velocity v2D P is obtained:

v2D P = v20
[
(3 − (1 − e2)1/2)

]
−v20

[
2

π
(1 − e)1/2E

(
2e

−1 + e

)
+ 2

π
(1 + e)1/2E

(
2e

1 + e

)]
. (18)

Expanding Eq. (18) around e = 0, we get

v2D P = v20

(
5

8
e2 + 79

512
e4 + 617

8192
e6 + ...

)
. (19)

This same result may be found from the restricted three-body problem (Danby 1992; Kaula
1968) for orbital inclination i = 0o (see app. A.0.1 ).
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3.2 Spatial case

We compute the spatial dispersion velocity, i.e., the root square of the mean square velocity
vDS of a planetesimal m in elliptical orbit relative to the circular orbit with radius a0 of a
protoplanet M , where the orbital planes of M and m are separated by an inclination i . The
elliptical and circular orbits of m and M are shown in Fig. 1, where �, ω, and ϕ, are the
longitude of the ascending node, the longitude of the pericenter and the true anomaly. This
procedure is also valid for the elliptical orbit of ABs and KBs intersecting the local mean
circular orbit.

Following (Adachi et al. 1976), we measure the orbital velocities of the planetesimal and
the planet in cylindrical coordinates in the heliocentric planetesimal orbital system. Then,
the orbital velocity of m is V̄ given by Eq. (11), while from Fig. 1, the orbital velocity of M
in cylindrical coordinates is:

v̄0S = (0, v0 sin d,−v0 cos d). (20)

The square of the relative velocity is then given by

(V̄ − v̄0S)2 = v20

[
e2 sin2 ϕ

1 + e cosϕ
+ ((1 + e cosϕ)1/2 − sin d)2 + cos2 d

]
. (21)

We average Eq. (21), following Eq. (13), over one orbital period

v2DS = 〈
(V̄ − v̄0S)2

〉 = v20

[〈
e2 sin2 ϕ

1 + e cosϕ

〉]
+v20

[〈
((1 + e cosϕ)1/2 − sin d)2 + cos2 d

〉]
, (22)

where d is obtained fromNapier’s rules for right spherical triangles (Adachi et al. 1976) from
the triangle NmM of Fig. 1

sin d = cos i

cos D
, (23)

with

cos D = a0
R

. (24)

Substituting Eq. (15) in the first term of the right hand of Eq. (22) and developing the second
term of Eq.(22), v2DS is obtained using Eqs. (23) and (24), and substituting Eqs.(1), (6) and
(9)

v2DS = v20
[
(3 − (1 − e2)1/2)

] − 2v20 cos i
〈
(1 + e cosϕ)1/2

〉
, (25)

with
〈
(1 + e cosϕ)1/2

〉
given by Eq. (17).

Equation (25) is general and complete and may be expanded around any value of e being
an exact solution of the orbital inclination i .

Expanding Eq. (25) around e = 0, we get

v2DS = v20

[
2 − 2 cos i + e2

(
1

2
+ 1

8
cos i

)]

+v20

[
e4

(
1

8
+ 15

512
cos i

)
+ e6

(
1

16
+ 105

8192
cos i

)
+ ...

]
. (26)

Note that when i = 0o, v2DS = v2D P . The result of Eq. (25) may be also found from the
restricted three-body problem (Danby 1992; Kaula 1968) (see app. A.0.2 ).
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3.3 Particular case: statistical velocity dispersion

The statistical dispersion of velocities about the mean velocity is usually called the statistical
velocity dispersion σ . For the case in which the dispersion velocity is the statistical dispersion
of velocities, the mean velocity of the planetesimal is equal to the circular Keplerian velocity
of the protoplanet.

For the planar case, 〈V̄ 〉 = v̄0. Then, vD P= σp and the following equality is fulfilled

σ 2
p = 〈(V̄ − v̄0)

2 〉 = 〈V̄ 2 〉 − 〈v̄20 〉, (27)

arriving to

σ 2
p = 〈V̄ 2 〉 − v20 = v20(1 − (1 − e2)1/2). (28)

Note that when e = 0, σp = 0 while if e = 1, σp = v0.
For the spatial case, 〈V̄ 〉 = v̄0S . Then vDS= σS and the following equality is fulfilled

σ 2
S = 〈(V̄ − v̄0S)2 〉 = 〈V̄ 2 〉 − 〈v̄20S 〉, (29)

arriving to

σ 2
S = 〈V̄ 2 〉 − v20S = v20(1 − (1 − e2)1/2). (30)

If e = 0, σS = σp = 0 while if e = 1, σS = σp = v0. Then σ 2
S = σ 2

p .

4 Comparison with the standard dispersion velocity

The usual conversions between orbital elements and relative velocities assume e << 1 for the
planar case (Czechowski et al. 1992; Lissauer and Stewart 1993; Safronov 1972) and (e, i)
<< 1 for the spatial case (Lissauer and Stewart 1993). In the following, we define standard
dispersion velocity v2std (v3std ) for the planar (spatial) case, to the planetesimal dispersion
velocity defined by Lissauer and Stewart (1993), which has been up to the present usually
adopted in the literature (Guilera et al. 2010, 2011, 2014; Ida et al. 2008; Morbidelli et al.
2009; Weidenschilling 2011; Wetherill and Stewart 1993; Chambers 2014; San Sebastián et
al. 2019).

4.1 Planar case

We call standard dispersion velocity v2std to the velocity of a planetesimal relative to the
local mean circular orbit averaged over an epicycle, which was given by Lissauer and Stewart
(1993) and calculated by Czechowski et al. (1992) and (Safronov 1972)

v2std = v0

(
5

8
e2

) 1
2

. (31)

Note that v2D P given by Eq. (18) and expanded around e = 0 (Eq. (19)) up to second order
in e is equal to the square of the standard dispersion velocity v22std . The results of Eq. (19)
up to fourth and sixth order in e, i.e., v2D P(4th) and v2D P(6th), are shown in Fig. 2 (left), where

v22std is also shown for comparison.
In Table 1, we show the differences between our calculation of the dispersion velocity

and the standard expression, i.e.,
(√

v2D P(4th) − v2std

)
and

(√
v2D P(6th) − v2std

)
. We can
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Table 1 Difference between our
results of the dispersion velocity
and the standard one for the
planar case expressed in m s−1.
The square of the dispersion
velocity is calculated up to fourth
(v2D P(4th)) and up to sixth

(v2D P(6th)) order. vo is the local

circular velocity in m s−1 with
semiaxis ao in AU, and e is the
planetesimal orbital eccentricity

e ao vo

√
v2D P(4th) − v2std

√
v2D P(6th) − v2std

[AU ] [ms−1] [ms−1] [ms−1]
0.2 1 29788 23.20 23.66

3 17198 13.39 13.65

5 13322 10.37 10.58

30 5439 4.24 4.32

0.4 1 29788 184.24 198.55

3 17198 106.37 114.60

5 13322 82.39 88.77

30 5439 33.64 36.24

0.7 1 29788 968.93 1192.82

3 17198 559.22 688.44

5 13322 433.19 533.28

30 5439 176.86 217.72

0.9 1 29788 2023.29 2638.79

3 17198 1167.75 1522.98

5 13322 904.57 1180.36

30 5439 369.31 481.90
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Fig. 2 Planar Case. Left: Normalized square of the dispersion velocity as a function of the planetesimal’s
orbital eccentricity e up to sixth order (v2D P(6th), full line) and up to fourth order (v

2
D P(4th), long dashed line).

The square of the standard dispersion velocity v22std is shown in short dashed line. Right: The normalized
error εp as a function of e with the square of the dispersion velocity at sixth order (εp(6th), full line) and at
fourth order (εp(4th), long dashed line)

see that the differences increase with the inclusion of higher-order terms as well as with the
eccentricity and decrease with ao. The differences shown in Table 1 might be significant for
e ≥ 0.4.

We define the normalized error εp as

εp = |v2D P − v22std |
v20

. (32)

The error given by Eq. (32) with Eq. (19) up to fourth order (εp(4th)) and up to sixth order
(εp(6th)) is shown in Fig. 2 (right).
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Fig. 3 Spatial case. Left: Normalized square of the dispersion velocity as a function of the planetesimal’s
orbital eccentricity e up to sixth order in e (v2DS(6th), full line) and up to fourth order (v2DS(4th), long dashed

line). The square of the standard dispersion velocity v23std is shown in short dashed line. Right: The normalized
error εs as a function of e with the square of the dispersion velocity at sixth order in e (εs(6th), full line) and
at fourth order (εs (4th), long dashed line). In all cases we assume i=e/2

For e = 0.2, εp(4th) is 9.875 x 10−3 and εp(6th) is 1.0 x 10−2 while for e ≥ 0.4, the
inclusion of higher-order terms are not negligible since εp(4th) is 3.95 x 10−2 and εp(6th) 4.26
x 10−2.

4.2 Spatial case

We call standard dispersion velocity v3std to the dispersion velocity given by Lissauer and
Stewart (1993),which has been up to the present usually adopted in the literature (Guilera et al.
2010, 2011, 2014; Ida et al. 2008; Morbidelli et al. 2009; Weidenschilling 2011; Wetherill
and Stewart 1993; San Sebastián et al. 2019), and is the velocity of a planetesimal relative
to the local mean circular orbit averaged over an epicycle and over a vertical oscillation
assuming sin i ∼ i (See app. B)

v3std = v0

(
5

8
e2 + 1

2
i2

) 1
2

. (33)

The results of Eq. (26) up to fourth and sixth order in e, i.e., v2DS(4th) and v2DS(6th), are shown

in Fig. 3 (left), where v23std is also shown for comparison.We have assumed cos i = cos (e/2)
(San Sebastián et al. 2019) to plot Fig. 3.

In the same way as for the planar case, we define the normalized error εs as

εs = |v2DS − v23std |
v20

. (34)

The error given byEq. (34)with the square of the dispersion velocity up to fourth order (εs(4th))

and up to sixth order (εs(6th)) in e is shown in Fig. 3 (right). For e = 0.4, (
√

v2DS(6th) − v3std )

is ∼ 0.03v0, while for e = 0.8, (
√

v2DS(6th) − v3std ) is ∼ 0.1v0.

In Table 2, we present the summary of the planetesimal dispersion velocities presented in
this paper.
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Table 2 Summary of the square of dispersion velocities

Planar case

Dispersion velocity v2D P = v20

[
(3 − (1 − e2)1/2)

]
−v20

[
2
π (1 − e)1/2E

(
2e−1+e

)
+ 2

π (1 + e)1/2E
(

2e
1+e

)]
Dispersion velocity (6th) v2D P(6th) = v20

(
5
8 e2 + 79

512 e4 + 617
8192 e6

)
Statistical velocity dispersion σ 2

p = v20(1 − (1 − e2)1/2)

Standard dispersion velocity v22std = v20

(
5
8 e2

)
Spatial case

Dispersion velocity v2DS = v20

[
(3 − (1 − e2)1/2)

]
−v20 cos i

[
2
π (1 − e)1/2E

(
2e−1+e

)
+ 2

π (1 + e)1/2E
(

2e
1+e

)]
Dispersion velocity (6th) v2DS(6th) = v20

[
2 − 2 cos i + e2( 12 + 1

8 cos i)
]

+ v20[
e4( 18 + 15

512 cos i) + e6( 1
16 + 105

8192 cos i)
]

Statistical Velocity Dispersion σ 2
S = v20(1 − (1 − e2)1/2)

Standard Dispersion Velocity v23std = v20

(
5
8 e2 + 1

2 i2
)

5 Results and applications

We apply the expansion of Eq. (25) around e = 0 (Eq. (26)) up to sixth order in e to study on
one hand, semianalytical approaches (Sect. 5.1) and the collision frequency on large asteroids
(Sect. 5.2) in a gas-free enviroment, and on the other hand, the formation of a giant planet
including planetesimal fragmentation in a gaseous disk (Sect. 5.3).

5.1 Semianalytical calculations

5.1.1 Accretion rates

It was shown that dispersion velocities are a key factor in the solid accretion rate of proto-
planets (Guilera et al. 2010, 2014; Chambers 2006, 2014; Inaba et al. 2001; San Sebastián
et al. 2019). We compute a very simple calculation of solid accretion rates in a gas-free
environment in order to evaluate the behavior of accretion rates when our calculation of
the dispersion velocity is applied. In a more realistic model of planetary formation, gas is
still present; thus, the eccentricities and inclinations may not be excited to too large values
since they are obtained as an equilibrium between the damping effects of the gas drag and
the dynamical stirring of the planetesimal population (Chambers 2006; San Sebastián et al.
2019). A more elaborated model of planetesimal accretion (Inaba et al. 2001; San Sebastián
et al. 2019) is presented in Sect. 5.3. The simple and easy form of the solid accretion rate Ṁ
of a terrestrial protoplanet or of the core of a giant planet is (Lissauer and Stewart 1993)

Ṁ = 2
√
3π2�(a0)R2

C FGstd

2PM
, (35)
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Fig. 4 Error in the focusing factor εFG (left panel) and relative error εF (right panel) as a function of e for
e > emin . Top: a0= 1 AU and M= 0.002, 0.260 and 2.100 M⊕. Middle: a0= 5 AU and M= 0.260, 2.100 and
7.10 M⊕. Bottom: a0= 15 AU and M= 0.260, 2.100 and 7.10 M⊕. M and its corresponding emin are taken
from Table 3. In computing εFG and εF , v

2
DS is taken up to sixth order in e (v2DS(6th)) with i=e/2

where �(a0) is the surface mass density distribution of planetesimals at a distance a0 from
the central star M∗, RC is the radius of M and PM is the period of its circular orbit with
semiaxis a0. The gravitational enhancement factor FGstd is Lissauer and Stewart (1993)

FGstd =
(
1 + v2e

v23std

)
, (36)

with v23std given by Eq. (33) being ve the escape velocity at the surface of M. As planetesimal
velocities decrease, the gravitational enhancement factor increases to approximately twice
the two-body value, and then, the gravitational effect of M∗ should be taken into account
(Greenzweig and Lissauer 1990). However, in the high-velocity regime, the gravitational
focusing is well approximated by the two-body particle in a box approximation given by
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Table 3 Our results of the
minimum planetesimal orbital
eccentricity emin for which the
dispersion dominated regime is
valid and the minimum
planetesimal orbital eccentricity
estd for which the high-velocity
regime are valid

Rc[K m] 1 × 103 5 × 103 1 × 104 1.5 × 104

M [M⊕] 0.002 0.260 2.100 7.100
estd 0.005 0.026 0.051 0.077
emin 0.006 0.032 0.065 0.095

The results are shown for a protoplanet of mass M and radius RC with
a bulk density of 3 gr cm−3

Eq. (36) where the gravitational effect of M∗ is neglected (Greenzweig and Lissauer 1990;
Lissauer and Stewart 1993). The high velocity regime is valid when the Hill eccentricity
eH ≥ 4 and the Hill inclination iH ≥ 2 (Greenzweig and Lissauer 1990; Guilera et al.
2010; Inaba et al. 2001), where eH = e/H and iH = i/H , with H = RH /a0 being RH

the protoplanet’s Hill sphere. The minimum values of e, that we call estd , for which the high
velocity regime is valid (estd=4H) are shown in Table 3 for M = 0.002, 0.026, 2.1 and 7.1
M⊕ assuming M∗=M	. In computing RC , which is also shown in Table 3, a protoplanet bulk
density ρ of 3 gr cm−3 is taken.

In a previous paper, we computed the minimum eccentricity emin for which the dispersion
dominated regime is valid (see our Appendix B.1 in San Sebastián et al. (2019) where we
follow (Greenberg et al. 1991)). For a planetesimal with orbital semiaxis a, it satisfies

(a + a0)emin

4
= 2.5Ha0. (37)

Substituting the average of Eq. (9) into Eq. (6), and Eq. (6) into Eq. (37), the following
third-order equation is obtained

e3min − 10He2min − 2emin + 10H = 0. (38)

Equation (38) has three real solutions but only one root satisfies 0 < emin < 1, which is
tabulated in Table 3.

From our general expression of the square of the spatial dispersion velocity given by
Eqs. (25) and (26), the gravitational focusing factor FG for e > emin is expressed in the
following form:

FG =
(
1 + v2e

v2DS

)
. (39)

Subtracting Eqs. (36) and (39), we define the error εFG in the focusing factor

εFG = FGstd − FG , (40)

and the relative error εF

εF = FGstd − FG

FG
. (41)

The results of εFG and εF as a function of e for e > emin are shown in Fig. 4 for three values
of a0 of 1, 5 and 15 AU. Note that Eq. (26) depends on a0 through v0 (Eq. (4)). For each a0,
three values of M and its corresponding emin are taken from Table 3. In computing Eqs.( 40)
and (41), v2DS given by Eq. (26) is taken up to sixth order in e (v2DS(6th)) and assuming i = e/2
(San Sebastián et al. 2019).

Since the accretion rate is proportional to the gravitational focusing factor, we can see
from Fig. 4 that our results of the accretion rate Ṁ result lower than previous calculations.
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Note that after a number N of time steps δt in the calculation of the growth of a terrestrial
planet or of the core of a giant planet, the accumulative error inMwould become proportional
to (N εFG ).

Our results of εF show that the focusing factor given by Eq. (39) with v2DS up to sixth order
in e (v2DS(6th)) reduces Ṁ such that for low e, εF saturates at 0.166. Then, our calculation
of solid accretion rates are lower than former calculations being at most ∼ 86 per cent of
the previous estimates for low e. It means that by using our improved equations, we get
differences with respect to the previous equations, even for low e. It should be noted that
εF increases with M and a0. For M= 7 M⊕ and a0 = 5 AU (15 AU) εF ∼ 0.3 (0.4) for
high eccentricities. Our results of solid accretion rates are then at most ∼ 70 per cent of the
previous estimates for high e. Although εF would be reduced when gas is present (Chambers
2006), we will see in Sect. 5.3 that the protoplanet achieves the crossover mass at a longer
time than our previous simulations where the standard dispersion velocity usually adopted
in the literature has been applied (San Sebastián et al. 2019).

5.1.2 Collision probabilities

We are interested in the behavior of collision probabilities amongminor bodies when our cal-
culation of the dispersion velocity is applied. The dispersion velocity plays an important role
in calculations of the collisional evolution of ABs (see Sect. 5.2) and KBs, where collisions
may be destructive (Beitz et al. 2016; Morbidelli et al. 2009; Parisi 2013; Parisi et al. 2016;
Stern and Colwell 1997). It also plays a role in the probability collision among planetesimals
in models of planetary formation including planetesimal fragmentation (see Sect. 5.3).

The total number of collisions between projectiles p and targets T in a time step δt is
given by Morbidelli et al. (2009); San Sebastián et al. (2019); Wetherill and Stewart (1993)

NCstd(p, T ) = PI std(p, T )Np NT FGstd(p, T )π(Rp + RT )2δt, (42)

where PI std(p.T ) is the intrinsic collision probability, Np and NT are the number of particles
p and T contained in the volume V olstd , Rp and RT are the radii of the particles p and T , and
FGstd(p, T ) is the gravitational focusing factor. In the high-velocity regime, FGstd(p, T ) is
given by

FGstd(p, T ) =
(
1 + v2e (p, T )

v23std(p, T )

)
, (43)

being ve(p, T )=
√
2G(Mp + MT )/(Rp + RT ) the mutual escape velocity between the pro-

jectile with mass Mp and the target with mass MT at the point of contact. The square of the
relative velocity v23std(p, T ) = v23std(p) + v23std(T ), where v23std(p) and v23std(T ) are given
by Eq. (33) for the projectile and target eccentricities and inclinations (ep, i p) and (eT , iT ),
respectively. It should be mentioned that in computing v23std(T ) and v23std(p) from Eq. (33),
Morbidelli et al. (2009) take sin iT and sin i p without approaching sin i ∼ i (See app. B).

The intrinsic collision probability is expressed in the following form Morbidelli et al.
(2009); San Sebastián et al. (2019); Wetherill and Stewart (1993)

PI std(p, T ) = αv3std(p, T )

V olstd
, (44)

where α=0.855 in the high-velocity regime and the volume V olstd is given at first order by
Morbidelli et al. (2009)

V olstd = 4π Hca0(Δa + 2a0e). (45)
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Fig. 5 Left: Comparison between the volume at first order V olstd (full line), the complete expression of the
volume V olGstd (dotted line) and our exact calculation of the volume V ol (dashed line) with a0 = 5 AU.
Right: Ratios of V olstd (full line) and V olGstd (dotted line) over our exact calculation of the volume V ol. We
take eT = iT = 0, ep = e, i p = i = e/2. In computing V olstd and V olGstd we take Δa = aMax − amin

In Eq. (45),Δa is the total width of the annulus, which is usually taken as an ad hoc parameter,
e is the mean eccentricity of the projectiles in the bin Δa, and Hc is the symmetrical mutual
scale height

Hc = a0
√

sin2i p + sin2iT . (46)

Wedefine the volumeV olGstd = 2Hcπ(R2
extG−R2

intG)where RextG= (a0+Δa/2)(1+e)
and RintG= (a0 − Δa/2)(1 − e) in order to calculate the general expression of Eq. (45),
obtaining

V olGstd = 4π Hca0(Δa + 2a0e + Δae2 + Δa2e/2a0). (47)

We can see that Eq. (47) at first order in Δa and e arrives to Eq. (45).
We obtain an expression of the volume for non-arbitrary values of the total width of the

annulus, computing the volume V ol = 2Hcπ(R2
ext − R2

int ), where Rext = aMax (1+ e), and
Rint = amin(1− e). From Eq. (6), aMax=a0(1 + ãMax ) and amin=a0(1+ ãmin). The values
of ãMax and ãmin are obtained from Eq. (9) setting ϕ = 0 and ϕ = π , respectively. Then,
the exact expression of the volume gives

V ol = 2Hcπa2
0

[
(1 + e)2

(1 − e)2
− (1 − e)2

(1 + e)2

]
. (48)

In the left panel of Fig. 5, we compare the different calculations for the volume V olstd ,
V olGstd andV ol at a0 = 5AU .We can see that for lowvalues of the eccentricity, the volumes
are similar, while for high values of the eccentricity, the differences increase between one
and two orders of magnitude. The ratio of Eqs. (45) and (48) (V olstd/V ol) and of Eqs. (47)
and (48) (V olGstd/V ol) are shown in Fig. 5 right, which result independent of a0. We can
see that V olstd < V olGstd < V ol and that the differences increase with e. In computing the
results of Fig. 5, we take Δa=aMax − amin , eT = iT = 0, ep = e, and i p = i = e/2.

We can see from Eq. (42) that NCstd(p, T ) depends on v3std(p, T ) through the
Factorstd(p, T ) here defined in

Factorstd(p, T ) = PI std(p, T )FGstd(p, T ). (49)
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Fig. 6 Relative error εNcR(p, T )

in the rate of impacts as a
function of e assuming MT = M
(with Mp << M) for a0 = 5 AU
with M = 2.1M⊕. We take
eT = iT = 0, ep = e, and
i p = i = e/2. In computing
εNcR(p,T ), v

2
DS is expanded

around e = 0 and taken up to
sixth order in e (v2DS(6th)). Solid
line: εNcR(p, T ) is calculated
assuming V olume = V ol.
Dashed line: εNcR(p, T ) is
calculated assuming
V olume = V olGstd

The general expression of the intrinsic collision probability PI (p.T ) is:

PI (p, T ) = αvDS(p, T )

V olume
, (50)

being v2DS(p, T ) the square of the relative velocity v2DS(p, T ) = v2DS(p) + v2DS(T ), where
v2DS(p) and v2DS(T ) are given by Eqs. (25) or (26) for the projectile and target eccentricities
and inclinations (ep, i p) and (eT , iT ), respectively, and V olume can be taken as V ol or
V olGstd .
We then define Factor(p, T ) as

Factor(p, T ) = PI (p, T )FG(p, T ), (51)

where FG(p, T ) is our calculations of the gravitational focusing factor in the high-velocity
regime

FG(p, T ) =
(
1 + v2e (p, T )

v2DS(p, T )

)
. (52)

Subtracting Eqs. (49) and (51), we define the error εNc in the number of collisions between
projectiles p and targets T

εNc(p, T ) = PI std(p, T )FGstd(p, T ) − PI (p, T )FG(p, T ). (53)

In order to find a comparative error in the number of impacts, we here define the relative
error εNcR(p,T ) as

εNcR(p,T ) = Factorstd(p, T ) − Factor(p, T )

Factor(p, T )
. (54)

In Fig. 6, the relative error εNcR(p,T ) is shown for a0= 5 AU and M = 2.1M⊕. For different
values of a0 and M , εNcR(p,T ) has a similar behavior than in Fig. 6. We assume eT = iT = 0,
ep = e with e > emin , i p = i = e/2, and MT= M (with Mp << M). In Fig. 6, v2DS is
computed through Eq. (25) expanded around e = 0 (Eq. (26)) and taken up to sixth order in
e assuming i = e/2 (v2DS(6th)). We can see from Fig. 6 that the relative error in the number
of impacts starts being ∼ 10 per cent for low eccentricities and increases with increasing
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e. In all cases, our results of the collision probabilities are lower than previous calculations
(Morbidelli et al. 2009; San Sebastián et al. 2019).

5.2 Collision frequency on undifferentiated asteroids

In a previouswork (Beitz et al. 2016; Parisi et al. 2016), we computed the number of collisions
on a target of radius 100km with projectiles of radius r during the age of the Solar System,
where the usual expressions of the dispersion velocity were applied. Only impactors in the
asteroid belt (AB) that are not rapidly removed by Yarkovsky effect (r > 0.1m) and that do
not lead to catastrophic disruption of the target (r < 22km) (Jutzi et al. 2010; Parisi 2013)
were considered.

Primordial large porous objects are subject to hydrostatic compression in their interiors
that lead to a compaction of material and thus, to a density increase toward the center. The
hydrostatic pressure Ph in the center of a body with radius R and mass M is given by Beitz
et al. (2016)

Ph = 3G M2

8π R4 , (55)

with G being the gravitational constant. If the compressional strength of the material, pcomp ,
is known, then one can calculate the maximum radius RMax for which the material does not
yield the hydrostatic pressure (Beitz et al. 2016)

RMax =
√

3pcomp

2πGρ2 , (56)

with ρ being the constant mass density in the interior of the body. The compressional strength
pcomp of dusty material is on the order of 107 Pa (Beitz et al. 2013). Thus, hydrostatic or
impact pressures exceeding this value are required to remove the microporosity within the
dusty material. For a mass density ρ of 2000Kg m−3, RMax is 133km. This means that
primordial bodies in the AB with radii below 130km would be undifferentiated asteroids of
constant density.

We compute the collision frequency of small asteroids impacting an asteroid of radius 100
km with initial volume filling factor φ of 0.6, corresponding to random close packing (Beitz
et al. 2016). The number of impacts on a target of radius R per unit time is

d Np(ri , ri+1)

dt
= Nv(ri , ri+1)π R2vi , (57)

where Nv(ri , ri+1) is the number of asteroids per unit volume in a bin of impactor radius
[ri , ri+1] in the main AB extending from 2.2 AU to 3.27 AU (Beitz et al. 2016; Parisi et al.
2016). Since we are taking the averaged number of asteroids per unit volume of the whole
AB which only depends on the impactor radii, Eq. (57) will increase with vi . The square of
the impact velocity v2i is computed as v2i =v2DS(p, T )+v2e , where v2e= 2 G(mi + M)/(ri + R)

is the square of the mutual escape velocity between the projectile with mass mi and the target
with mass M at the point of contact and v2DS(p, T ) is the square of the relative velocity, i.e.,
v2DS(p, T ) = v2DS(p)+ v2DS(T ), where v2DS(p) and v2DS(T ) are the square of the dispersion
velocity given by Eq. (26) for the projectile and target eccentricities and inclinations (ep, i p)

and (eT , iT ), respectively.
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Fig. 7 Eccentricity versus semimajor axis (Left) and eccentricity versus diameter (Right) ofMainBelt asteroids
with diameters in the range between 180km and 220km. Source: https://ssd.jpl.nasa.gov/tools

Fig. 8 Eccentricity versus semimajor axis (Left) and eccentricity versus diameter (Right) ofMainBelt asteroids
with diameters smaller than 44km. Source: https://ssd.jpl.nasa.gov/tools

We divide the AB into three semimajor axis zones, whose boundaries are given by the ν6
secular resonance with Saturn, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter
Morbidelli et al. (2002):
-Inner Ring (IR), between the ν6 and 3:1 resonances, from 2.2 to 2.5 AU. -Middle Ring (MR),
between the 3:1 and 5:2 resonances, from 2.5 to 2.8 AU. -Outer Ring (OR), between the 5:2
and 2:1 resonances, from 2.8 to 3.27 AU.

In computing v2DS(p, T ), we take a0=(2.2+2.5)/2AU for the IR, a0=(2.5+2.8)/2AU for the
MR, and a0=(2.8+3.27)/2 AU for the OR. Figures7 and 8 show the distribution in semimajor
axis, eccentricity space (left panels of both figures) and the distribution in diameter, eccen-
tricity space (right panels of both figures) of main-belt asteroids with diameters in the range
between 180km and 220km (target), and with diameters smaller than 44km (projectiles),
respectively.

In order to calculate v2DS(p), we adopt (ep, i p) = (emax , imax ) from Tables 4, 5 and 6 that
are the most frequent values of the eccentricities and inclinations for each range of diameters
in the IR,MR andOR, respectively. Analogously, we compute v2DS(T ) assuming eT = 0.083
and iT = 0.27 which are the most frequent values for asteroids of diameters in the range
between 180 and 220km.2

The total number of impacts in each impactor bin size over the age of the solar system is
computed (Beitz et al. 2016; Parisi et al. 2016)

Ncol(ri , ri+1) = d Np(ri , ri+1)

dt
4.5Gyrs. (58)

2 https://ssd.jpl.nasa.gov/tools.
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Fig. 9 Number of impacts Ncol of projectiles with radii in the range between 1 × 10−3 km and 22km on a
target of 100km radius over 4.5 Gyrs for the Inner, Middle and Outer Ring, compared to the results obtained
in Beitz et al. (2016)
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Table 4 Eccentricities emax and inclinations imax of asteroids in the Inner Ring for different diameter d ranges

d<1km 1km<d<10km 10km<d<20km 20km<d<44km

emax 0.284 0.173 0.151 0.093

imax 0.088 0.086 0.07 0.09

Table 5 Eccentricities emax and inclinations imax of asteroids in the Middle Ring for different diameter d
ranges

d<1km 1km<d<10km 10km<d<20km 20km<d<44km

emax 0.369 0.128 0.15 0.14

imax 0.546 0.21 0.13 0.14

Table 6 Eccentricities emax and inclinations imax of asteroids in the Outer Ring for different diameter d ranges

d<1km 1km<d<10km 10km<d<20km 20km<d<44km

emax 0.43 0.076 0.09 0.1

imax 0.43 0.157 0.03 0.04

Fig. 10 Number of impacts Ncol of projectiles with radii in the range between 1 × 10−3 km and 2 × 10−3

km (Upper panel) and between 5km and 22km (Bottom panel) on a target of 100km radius over 4.5 Gyrs for
the Inner, Middle and Outer Ring, compared to the results obtained in Beitz et al. (2016) and to the results
using the standard dispersion velocity
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In Fig. 9, Ncol is shown for projectiles in the IR, MR and OR, where the results obtained
in Beitz et al. (2016) are included. We can see that for projectiles larger than 1km in diameter
the number of impacts computed by Beitz et al. (2016) is higher than the ones here calculated
for the IR, MR, and OR. We can also observe that in particular for smaller projectile sizes,
there are significant differences between the number of impacts calculated for the IR, MD,
and OR. For diameters smaller than 1km, the separations between the points increase due to
the increase in eccentricity.

In Fig. 10, Ncol is shown for projectiles with radii in the range between 1x10−3 km and
2×10−3 kmand between 5kmand 22km for the IR,MRandOR,where the results obtained in
Beitz et al. (2016) and the results computing vi with the relative velocity v3std(p, T ) are also
shown for comparison. The square of the relative velocity v23std(p, T ) is (v23std(p)+v23std(T )),
where v23std(p) and v23std(T ) are given by the standard dispersion velocity (Eq. (33)) for the
projectile and target eccentricities and inclinations (ep, i p) and (eT , iT ), respectively. In the
left panel of Fig. 10, Ncol is shown for the MR since in Beitz et al. (2016) the target was
placed at the MR, where in the upper panel the results by Beitz et al. (2016) are the same as
in the case of the MR by using the standard dispersion velocity, while in the lower panel the
number of impacts computed by Beitz et al. (2016) is higher. In the right panel of Fig. 10,
the differences in the OR increase with decreasing projectile size for small impactors due to
increase in eccentricity.

5.3 Numerical calculation of giant planet formation with planetesimal
fragmentation

In a series of previous works (Guilera et al. 2010, 2014), we developed a numerical model
that describes the formation of giant planets immersed in a protoplanetary disk that evolves in
time. In ourmodel, the protoplanetary disk is represented by a gaseous and a solid component.
Planets grow by simultaneous accretion of solids and gas. The solid component of the disk
evolves by planet accretion, radial drift due to nebular drag, and collisional evolution, while
the gaseous component evolves by an exponential decay. Our planetesimal fragmentation
model developed in Guilera et al. (2014) was improved by San Sebastián et al. (2019) incor-
porating several processes and different velocity regime models for the calculation of low
and high relative planetesimal velocities. The number of collisions among planetesimals was
computed in San Sebastián et al. (2019) by Eq. (42) in the high-velocity regime (see Section
2.2.1 and Appendix B.1 in San Sebastián et al. (2019)), and the protoplanet accretion rate was
computed following (Inaba et al. 2001) (see Appendix A.2 in San Sebastián et al. (2019)),
where the square relative velocity between a planetesimal and the embryo was computed
as v23std (Eq.(33)). Since we have shown (San Sebastián et al. 2019) that the high-velocity
regime is dominant, our model is here improved with the inclusion of our calculation of the
dispersion velocity vDS developed in Sect. 3.2.

Our simulations start with a disk ten times more massive than the minimum solar nebula
at the beginning of the oligarchic growth with a moon-sized embryo located at 5 AU from
the central star that is immersed in an homogeneous single-sized population of nonporous
planetesimals of 100km radius. The simulations stop when the crossover mass is achieved.
We present in this paper the results of the simulation including v2DS expanded around e = 0
up to sixth order in e (V 2

DS(6th)) for the high-velocity regime, where the baseline case for this
work is the same as in San Sebastián et al. (2019).

The evolution of the protoplanet mass is shown in Fig. 11, where we can observe that the
protoplanet achieves the crossover mass at a longer time than in the baseline case (top panel),
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Fig. 11 Core masses (solid lines)
and envelope masses (dashed
lines) as a function of time. Gray
lines: model with no planetesimal
fragmentation. Red lines:
baseline model. Pink lines:
baseline model with V 2

DS(6th).
Black lines: model with no
planetesimal fragmentation and
V 2

DS(6th). Top panel: Time
evolution of the protoplanet mass
until it achieves the crossover
mass. Bottom panel: same as top
panel but until 2 Myr

although the protoplanet growth increases slightly with respect to the baseline case within
the first millions years (bottom panel).

In Fig. 12 (left), the relative velocity of 100-km-radius planetesimals is shown. The
increased collision velocity (with respect to the baseline case) generates that 100-km-radius
planetesimals reach the necessary energy to fragment due to collisions at an earlier time,
which follows from Fig. 12 (right). The figure shows the time evolution of the mean value
of the surface density of 100-km-radius planetesimals for the baseline case and for the sim-
ulation where V 2

DS(6th) is included. We can see that the surface density for the case with

V 2
DS(6th) decreases at an earlier time than in the baseline case since the initial 100km-sized

planetesimals start to fragment earlier due to the increased collision velocity.
The time evolution of the relative velocity among planetesimals for the baseline model

and for VDS(6th) is shown in Fig. 13 for planetesimals of 1km and 1m radii. We can see that
the relative velocity among planetesimals decreases with decreasing planetesimal radius due
to damping by gas drag in the baseline case (Chambers 2006; San Sebastián et al. 2019) as
well as in the case where VDS(6th) is included. In Figs. 14 and 15, we show the time evolution
of the mean surface density and the accretion rates for km-radius andm-radius planetesimals.
We can see that the surface density for the case in which V 2

DS(6th) is included increases during
the first 1.5 Myrs with respect to the baseline case since planetesimals fragment earlier due
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Fig. 12 Left: Time evolution of the relative velocity among 100-km-radius planetesimals for the baseline
model (dashed lines) and for VDS(6th) (solid lines). Right: Time evolution of the mean value of the surface

density of 100-km-radius planetesimals for the baseline model (dashed line) and the case where V 2
DS(6th) is

included (solid line)

Fig. 13 Time evolution of the relative velocity among planetesimals for the baseline model (dashed lines) and
for VDS(6th) (solid lines). Left: 1km-radius planetesimals. Right: 1m-radius planetesimals

Fig. 14 Left: Time evolution of the mean value of the surface density of 1-km-radius planetesimals for the
baseline case (dashed line) and the case where VDS(6th) is included (solid line). Right: Accretion rate as
function of time of 1-km-radius planetesimals for the baseline case (dashed line) and the case where VDS(6th)
is included (solid line)
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Fig. 15 Left: Time evolution of the mean value of the surface density of 1-m-radius planetesimals for the
baseline case (dashed line) and the case where VDS(6th) is included (solid line). Right: Accretion rate as
function of time of 1-m-radius planetesimals for the baseline case (dashed line) and the case where VDS(6th)
is included (solid line)

to increased collision velocity, increasing the number of smaller planetesimals. We can also
observed that the accretion rates are slightly higher for the case in which V 2

DS(6th) is included
during the first 1.5 Myrs. During the later evolution, surface densities and accretion rates
decrease for the case with V 2

DS(6th) (with respect to the baseline case) not only due to the
fragmentation process but also because planetesimals are subject to an increased perturbation
(increased relative velocity), and then, some of them will not participate in the formation of
the embryo being scattered out of the embryo feeding zone.

6 Conclusions

The dispersion velocity plays a key role in analytical as well as in numerical models of
the collisional evolution of planetesimals, ABs and KBs, as well as in the calculation of
protoplanets accretion rates.

We calculate a general and complete analytical expression of the square of the dispersion
velocity, whichmay be expanded as a power series around any value of the orbital eccentricity
e and which is an exact solution for any value of the orbital inclination i , that may be useful
to study several aspects of the planetary and satellite formation and evolution processes.

We expanded our expression of the square of the dispersion velocity around e = 0 up to
sixth order in e to analyze in a simple semianalytical way the behavior of accretion rates and
collision probabilities in a gas free environment. We find that our results of solid accretion
rates and collision probabilities are lower than previous estimates where the particle-in-a-box
approach has been applied. Our models of the formation of a giant planet with planetesimal
fragmentation in a gaseous disk (San Sebastián et al. 2019) and of the collision frequency
on undifferentiated large asteroids (Beitz et al. 2016; Parisi et al. 2016) are here improved
by using our expression of the square of the dispersion velocity up to sixth order in e. We
find, on the one hand, that the protoplanet achieves the crossover mass at a longer time than
previous cases where the standard dispersion velocity usually adopted in the literature has
been used. Such result confirms the predictions found from our semianalytical approach. On
the other hand, our model of the collision frequency on undifferentiated large asteroids is
here improved by using in our calculation of the dispersion velocity the updated distribution
of eccentricities and inclinations as function of the impactor and target radii in the inner,
middle and outer asteroid belt.
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The analytical equations presented in this paper offer a rigorous calculation of relative
velocities among minor bodies, which, in principle, might provide more accurate results for
planned space missions.
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A Jacobi integral

A.0.1 Planar case

In the frame of the restricted three-body problem (Danby 1992; Kaula 1968) for orbital
inclination i = 0o, the square of the relative velocity v22Sa f in the protoplanet rotational
system is given by Safronov (1972):

v22Sa f = v20

[
3 −

(
1 − e2

1 + e cosϕ

)
− 2(1 + e cosϕ)1/2

]
. (59)

We average Eq. (59) over one orbital period as:

< v22Sa f >= 1

2π

∫ 2π

0
(v22Sa f ) dϕ. (60)

Then,

〈v22Sa f 〉 = v20

[
3 −

〈
1 − e2

1 + e cosϕ

〉
− 2

〈
(1 + e cosϕ)1/2

〉]
, (61)

where 〈
1 − e2

1 + e cosϕ

〉
= (1 − e2)1/2. (62)

Substituting Eqs. (62) and (17) in Eq. (61), we arrive to Eq.(18), i.e., 〈v22Sa f 〉=v2D P .

A.0.2 Spatial case

In a reference system rotating with the protoplanet around the star, the squared relative
velocity v23Sa f of a planetesimal with an eccentric, inclined orbit with respect to the circular
orbit of the protoplanet (Danby 1992; Kaula 1968) at the point of intersection of the orbits
is given by

v23Sa f = v20

[
3 −

(
1 − e2

1 + e cosϕ

)
− 2 cos i(1 + e cosϕ)1/2

]
. (63)

If i = 0o, Eq. (63) equals Eq. (59), i.e., v2D3Sa f = v2D2Sa f . Averaging Eq. (63) over one
orbital period

〈v23Sa f 〉 = v20

[
3 −

〈
1 − e2

1 + e cosϕ

〉
− 2 cos i

〈
(1 + e cosϕ)1/2

〉]
, (64)
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and substituting Eq. (62) in the second term and Eq. (17) in the third term of the right
hand of Eq. (64), we arrive to Eq. (25), i.e., 〈v23Sa f 〉 = v2DS . Note that when i = 0o,

v2DS = v2D P = 〈v22Sa f 〉 = 〈v23Sa f 〉.

B Planar case plus the average over a vertical oscillation

The epicyclic approximation (Binney and Tremaine 1987) describes the motion of a particle
in the meridional plane, where the particle motion is given by a simple harmonic oscillation
in the XY plane plus a simple harmonic oscillation in the vertical direction. In a similar way,
for (e, i) << 1, the square of the standard dispersion velocity in space v23sdt (the square of
Eq. (33), Lissauer and Stewart (1993)) may be obtained as the first term of Eq. (19) plus the
contribution of the average over a vertical oscillation.

From Fig.1, the vertical component of the planetesimal position measured with respect to
the XY plane is

z = R sin (ω + ϕ) sin i . (65)

Then, deriving Eq. (65)

ż = Ṙ sin (ω + ϕ) sin i + Rϕ̇ cos (ω + ϕ) sin i . (66)

Substituting Eqs. (7) and (8), in Eq. (66) we obtain

ż = v0 sin i

(1 − e2)1/2(1 + ã)1/2
[(1 + e cosϕ) cos (ω + ϕ)

+e sin ϕ sin (ω + ϕ)]. (67)

Substituting Eq. (9) in Eq. (67), rising to the square and averaging in the way shown in
Eq. (13), we get

〈ż2〉 = v20 sin
2 i

(
1 − (1 − e2)1/2

2

)
. (68)

Finally, developing Eq. (68) in power series around (e = 0, i = 0), approximating sin i ∼ i,
adding the first term of Eq. (19) and keeping terms up to second order in (e,i), we arrive to
the square of Eq. (33).
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