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Multi-class Classification of Upper Limb
Movements with Filter Bank Task-related

Component Analysis
Hao Jia , Fan Feng , Cesar F. Caiafa , Feng Duan Member, IEEE , Yu Zhang , Zhe Sun , Jordi Solé-Casals

Abstract—The classification of limb movements can provide
with control commands in non-invasive brain-computer interface.
Previous studies on the classification of limb movements have
focused on the classification of left/right limbs; however, the
classification of different types of upper limb movements has
often been ignored despite that it provides more active-evoked
control commands in the brain-computer interface. Nevertheless,
few machine learning method can be used as the state-of-the-art
method in the multi-class classification of limb movements.

This work focuses on the multi-class classification of upper
limb movements and proposes the multi-class filter bank task-
related component analysis (mFBTRCA) method, which consists
of three steps: spatial filtering, similarity measuring and filter
bank selection. The spatial filter, namely the task-related com-
ponent analysis, is first used to remove noise from EEG signals.
The canonical correlation measures the similarity of the spatial-
filtered signals and is used for feature extraction. The correlation
features are extracted from multiple low-frequency filter banks.
The minimum-redundancy maximum-relevance selects the essen-
tial features from all the correlation features, and finally, the
support vector machine is used to classify the selected features.

The proposed method compared against previously used mod-
els is evaluated using two datasets. mFBTRCA achieved a classi-
fication accuracy of 0.4193±0.0780 (7 classes) and 0.4032±0.0714
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(5 classes), respectively, which improves on the best accura-
cies achieved using the compared methods (0.3590±0.0645 and
0.3159±0.0736, respectively). The proposed method is expected
to provide more control commands in the applications of non-
invasive brain-computer interfaces.

Index Terms—Brain-computer Interface, Electroencephalo-
gram, Movement-related Cortical Potential, Upper Limb Move-
ment, Pattern Recognition.

I. INTRODUCTION

ANON-INVASIVE brain-computer interface is a frame-
work that bridges the gap between human brains and

external computers [1]–[3]. In non-invasive brain computer
interface, electroencephalogram (EEG) signals can be recorded
from the brain scalp with the acquisition devices. The acquired
multi-channel signals can be used to analyze the brain activi-
ties and classify the states of the brain, such as left and right
limb movements or multiple visual stimuli. These states can
be converted to control commands, and thus used to control
robots or other external devices. [4], [5].

In current research on brain-computer interfaces, brain ac-
tivities such as motor imagery and steady-state visual evoked
potentials are frequently used in human-robot interactions
[6], [7]. In motor imagery, the commands are generated by
classifying movements of the left/right hand, a foot or the
tongue [8]–[11]. Compared to the imagination of movement,
movement execution refers to the actual movement of limbs
and can evoke more distinguished activity in brain signals [12].
In the robot controlling with motor imagery, some subjects
prefer to executing the movements instead of imagining the
movements [13]. The reason is that the movement execu-
tion will provide a stronger response in the brain than the
movement imagination. In both the imagined movements and
the executed movement, these active-evoked commands are
controlled by human intent. In steady-state visual evoked
potentials, the number of commands depends on the number
of visual stimuli, and hence there are more control commands
[14]–[16]. However, the steady-state visual evoked potential is
evoked by external visual stimuli. When there are no external
visual stimuli, the subjects are unable to generate these control
commands intentionally. Thus, the passive-evoked commands
limit the application of steady-state visual evoked potentials.
Movement-related cortical potential (MRCP) is a brain activity
related to limb movement [17]. However, current approaches
mainly focused on the binary classification between the limb’s
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resting and movement states or two movement states [18]–
[27], and very few methods are designed towards multi-class
states [12], [28], [29].

Most brain-computer interface studies focus on improving
existing classification tasks in motor imagery and steady-state
visual evoked potentials [14], [30]–[32]. However, research
into less exhausting methods for users has been ignored.
Limb movements are active-evoked and are controlled by the
intent of the subject. The classification of multiple upper limb
movements not only is more friendly to users than visual
stimuli, but also has more commands if combined with left and
right limb classification. However, there are very few methods
for the multi-class classification of limb movements such as
elbow flexion and pronation of the single-side limb [33]–[36].
In this work, we aim to provide a machine-learning method,
namely multi-class filter bank task-related component analysis
(mFBTRCA), which is used in the multi-class classification
of single-side limb movements. The proposed method first
divides MRCP signals in the low-frequency bands into multi-
ple filter banks. In each filter banks, the multi-channel signals
are optimized with the spatial filter. Correlation features are
extracted from the optimized features. The correlation features
are concatenated and then classified with the support vector
machine classifier. A list of acronyms used in this work is
included in Table I to support the reading of the manuscript.

The work firstly explains the decoding of MRCP signals
as the rejection of unrelated noises and the measurement of
similarity. The mFBTRCA method has a simple structure and
shows better performance to other machine-learning and deep-
learning methods. This method also extends the use of a
TRCA-based method to the context of limb movement.

The structure of this work is as follows. In Section II,
a review is presented of related works on the classification
of limb movements. In Section III, the dataset description
and details on how the dataset is pre-processed are given.
This section also includes a description on the structure of
the mFBTRCA method. In Section IV, the performance of
mFBTRCA is evaluated in the binary classification cases. The
proposed method is also compared against other multi-class
classification benchmark methods in the multi-class cases.
In Section V, a discussion is given on how the mFBTRCA
method uses the information from the MRCP signals, and the
bottleneck of mFBTRCA in the multi-class limb movement
classifications is also touched upon. Finally, conclusions are
given in Section VI.

II. RELATED WORKS

In this section, we will first introduce previous multi-class
classification methods related to limb movements, including
machine learning and deep learning methods. The binary clas-
sification methods based on MRCP signals are then presented,
which are also related to limb movements.

Amongst brain activities that are related to limb movements,
motor imagery is frequently used in brain-computer interfaces.
The multi-class classification algorithms of limb movements
have mostly been developed based on motor imagery in
previous works. Motor imagery is related to the power change

TABLE I
ACRONYMS AND THEIR CORRESPONDING FULL NAMES

Acronym Full Name

Concept

EEG Electroencephalogram
MRCP Movement-Related Component Analysis

Limb State

EF Elbow Flexion
EE Elbow Extension
SU Supination
PR Pronation
HC Hand Close
HO Hand Open
RE Resting
PG Palmar Grasp
LG Lateral Grasp

Machine Learning Method

CSP Common Spatial Pattern
mCSP multi-class Common Spatial Pattern
FBCSP Filter Bank Common Spatial Pattern

bSTRCA binary Standard Task-Related Component Analysis
mSTRCA multi-class Standard Task-Related Component Analysis
bFBTRCA binary Filter Bank Task-Related Component Analysis
mFBTRCA multi-class Filter Bank Task-Related Component Analysis

SPoC Source Power Comodulation
MDM Minimum Distance to Mean
LDA Linear Discriminant Analysis

TSLDA Tangent Space Linear Discriminant Analysis

Deep Learning Method

CNN Convolutional Neural Network
RNN Recurrent Neural Network
GNN Graph Neural Network

LSTM Long Short-Term Memory
GRU Gate Recurrent Unit

SCNN Shallow Convolutional Neural Network
DCNN Deep Convolutional Neural Network

C-R-CNN Convolutional-RNN-Convolutional Neural Network
C-L-CNN Convolutional-LSTM-Convolutional Neural Network
C-G-CNN Convolutional-GRU-Convolutional Neural Network

GC-G-CNN Graph Convolutional-GRU-Convolutional Neural Network

of EEG signals between 8 Hz and 30 Hz. When the left/right
limb moves, the power of the EEG signals in some channels
increases or decreases.

Common spatial pattern (CSP) + Linear Discriminant Anal-
ysis (LDA) is the basic binary classification algorithm used
for motor imagery [37]. It searches for the spatial filter CSP
that maximizes and minimizes the self-covariance of EEG
signals, and it then converts the filtered signals to the logarithm
variances. The variances are the features used for classification
by the LDA classifier. The filter bank CSP computes and
combines multiple CSPs in various frequency bands, and
selects features from these bands by feature selection methods
based on mutual information. The filter bank CSP method has
demonstrated its competitive performance in several compe-
titions [38]. However, the original CSP+LDA and filter bank
CSP algorithms can only be used in binary classification. The
multi-class version of CSP+LDA puts the common spatial
pattern in the framework of information theoretic feature ex-
traction [39], or uses the one-versus-rest strategy in the spatial
filter [40]. Therefore, the common spatial pattern method can
classify multiple limb movements such as those made by the
left/right hand, a foot or the tongue.

In the CSP+LDA algorithm, the spatial filtering and the
logarithm covariance features can be regarded as the com-
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putation of a Riemann distance in the space of covariance
matrices in the context of brain-computer interfaces [41]. The
covariance matrices are used as EEG signal descriptors. In the
Riemannian geometry, these matrices are classified directly
using the topology of the manifold of symmetric and positive
definite matrices. The computation on the Riemannian mani-
fold facilitates to discern between the multiple classes of limb
movements. The minimum distance to mean (MDM) is the
straightforward algorithm relying on the Riemannian manifold
and the Riemannian distance [42]. This algorithm regards
the covariances of EEG signals as points on the manifolds.
The center point of the points belonging to the same class
is computed with the Riemannian mean of covariances. The
classes of points are predicted by measuring the Riemannian
distance between points and the center points. The tangent
space linear discriminant analysis classifier is an optimized
algorithm based on the Riemannian manifold [42]. It maps a
set of covariance matrices to the Riemannian tangent space,
and the dimensionally-reduced matrices are classified by a
linear discriminant classifier.

Following the development of deep learning techniques,
neural networks have proved to be very useful in EEG sig-
nal processing due to their competitive classification perfor-
mances. During EEG acquisition, signals are sparsely sampled
from several electrodes on the scalp, such that EEG signals
have low-grade spatial characteristics. The convolutional neu-
ral network (CNN) has shown its efficiency in extracting and
optimizing spatial features. The shallow CNN (SCNN) and the
deep CNN (DCNN) are two CNN architectures used for the
end-to-end EEG analysis [43]. The DCNN has been shown to
perform at least as well in binary classification as the widely
used filter bank CSP algorithm. Because both the SCNN and
DCNN architectures are based on neural networks, and the
number of output neurons can be enlarged as is convenient,
both can be used in multi-class classification. As EEG signals
are multi-channel time series, the temporal dynamic processes
will also be considered in signal processing. The recurrent
neural network (RNN) can use the temporal characteristics of
EEG signals, especially when equipped with long short-term
memory units [44]. In some studies, CNN and RNN were used
simultaneously in EEG signal processing to fuse the spatial
and temporal features [8], [45].

Neural networks can capture the spatial and temporal
characteristics of EEG signals. However, the transformation
process going from EEG signals to features is obscure. Deep
learning in EEG signal classification has achieved impressive
performances. The main reasons are (1) the development of
deep learning in pattern recognition, and (2) a deeper under-
standing of the traditional machine learning based algorithms.
In motor imagery, CSP-based algorithms have three main
steps carried out during feature extraction. Firstly, the spatial
filter of CSP+LDA selects the most discriminant channels and
optimizes the spatial characteristics. FBCSP then divides EEG
signals into several filter banks and applies the CSP algorithm
in each band, thus optimizing the features in different filter
banks. Finally, multiple CSPs can also be applied to the
different sliding time windows of EEG signals, and can then
select CSP features of these windows [31]. The EEG signal

processing procedure can thus be divided into spatial optimiza-
tion, filter bank selection and time window selection steps.
Different network architectures can be interpreted from the
three points when applying deep learning techniques to EEG
signals. For example, RNN uses the temporal characteristic
[46]–[49] while the graph neural network (GNN) optimizes
the spatial characteristic of the EEG signals [50]–[54].

However, the machine learning based algorithms cannot
fully interpret the information in MRCP signals. Compared
to the left/right limb movements in motor imagery, MRCP
is related to the motions of the limb. The MRCP signals
are located at the low-frequency bands of the EEG signals,
namely 0.05∼10 Hz. As a result, the noise or task-unrelated
components in other bands have to be removed in the signal
processing. The grand average MRCP is the approach used to
visualize the MRCP signals. It removes the noises by taking
the average of multiple EEG trials belonging to the same class.

Based on the grand average MRCP, Niazi et al. proposed
a matched filter method to solve the binary classification
task [18]. This method uses a spatial filter to maximize the
MRCP energy and minimize the noise energy by optimizing
the signal-to-noise ratio of the signal power. After the spatial
filtering, it uses the likelihood ratio to match the relationship
between the grand average MRCP and the signals before
averaging, thus detecting the movement execution.

The manifold-learning method was introduced to MRCP
processing by Xu et al. and showed improvements compared
to the matched filter method [21]. This method projects the sig-
nals into the manifold by using locality-preserving projections.
In the manifold space, these multi-channel signals are regarded
as points. The grand average MRCP is located at the center of
the trials belonging to the same class. These EEG signals are
classified in the manifold space using linear discriminant anal-
ysis. Lin et al. optimized the manifold method proposed by Xu
et al. by constructing the within-class graph and the between-
class graph when projecting EEG signals onto the manifold
[55]. A nearest-neighbour classifier is used to measure the
distances between the grand average MRCP point and other
points, thus predicting their labels. The manifold projection
in the two methods and the spatial filtering are in fact used
to find a matrix to reduce the dimension of the original
EEG signals through matrix multiplication. The procedure of
the traditional CSP-based method consists of spatial filtering
and feature extraction. From this perspective, the manifold-
based methods lack the step of feature extraction, because
the signals are classified by comparing the distances after the
manifold projection. Instead of measuring the differences with
Riemannian distances, Chu et al. regarded the distances as the
features and used the partial least squares regression to reduce
the dimensions of the features [29].

The above methods analyze the signals from sensors. To
optimize the spatial characteristics of signals, spatial filtering
is used to optimize the spatial distributions. However, the
sensor-based EEG signals have initial drawback of poor spatial
resolution. Source imaging converts the sensor-based signals
into the source-based signals so that the brain activity can be
identified with high spatial resolution [36].

To summarize the above related works, the classification of
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Fig. 1. Differences between double-side and single-side upper limb move-
ment. Motor imagery is used in the classification of double-side movement. In
motor imagery, the regions of interests are different between the left side and
right side. The variances of signals changes before and after the movement
onset. In the single-side classification, movement-related cortical potential is
used. The region of interest is located in the single side of the brain. The
amplitude increases and then decreases around the movement onset. The trend
of signals also shows differences between motions, such as elbow flexion and
hand open. This work focuses on the classification of these single-side motions
with movement-related cortial potential.

limb movements can be divided into two cases, double-side
limb movements and single-side limb movements, as shown in
Fig 1. The double-side limb movement is related to the binary
left/right limbs in motor imagery. In the multi-class classifica-
tion, the motions of double-side limb movements are extended
to a wide range, including left/right hand movement, left/right
foot movement. The single-side limb movement is related to
the MRCP signals. The motions include the movement of a
single limb, such as elbow flexion, hand close, pronation of
the upper limb. The classification of double-side limb move-
ments has obtained many good solutions in the past decades,
including the CSP-based machine-learning methods [39], [40],
the deep-learning methods [8], [56], and the source-imaging-
based methods [57]. However, the classification of single-side
limb movements remains to be developed. Because the data
to process in both single-side and double-side movements are
the multi-channel EEG signals, the methods in double-side
movements can also be used in the single-side movement
[25], [36]. However, there are usually performance losses in
machine-learning methods and unclear decoding process in
deep-learning methods [58].

In our previous work, we proposed the binary standard
task-related component analysis method (bSTRCA) [26]. The
bSTRCA follows the processing procedure of spatial filtering
and feature extraction. The spatial filter used is the task-related
component analysis, and the extracted feature is the canonical
correlation coefficient. The bSTRCA method is similar to the
matched filter method, as both methods first use spatial filter-
ing to reject the noise in EEG signals and then use a similarity
measurement to match the unlabelled EEG signals and the
grand average MRCP. However, there are two main differences
between the two methods. The first is related to how the spatial
filter rejects the noise in the signals. The matched filter method
and the bSTRCA method carry out the noise rejection based
on the variance and the amplitude of the signals, respectively.
MRCP signals are located at the low-frequency band in the

frequency domain. In said band, the amplitude of signals
mainly reflects the energy change of the signals instead of the
variances. The second difference is the role that the similarity
measurement plays in the classification. In the matched filter
method, the likelihood ratio is the indicator used for classifying
the movement and resting states by a threshold criterion. In
bSTRCA, correlation coefficients are extracted as features,
and a linear discriminant analysis classifier is then used to
classify the features. Filter bank selection can further optimize
the performance of bSTRCA, and hence the binary filter
bank task-related component analysis (bFBTRCA) method
was proposed [27]. However, bFBTRCA is not available for
multi-class classification because the framework of bSTRCA
was initially designed for binary classification.

In this work, we aim to migrate the structure of the bSTRCA
method to the multi-class standard task-related component
analysis (mSTRCA). Furthermore, we propose the multi-
class filter bank task-related component analysis (mFBTRCA)
method by incorporating filter bank selection into mSTRCA.
The proposed method can be used in the multi-class classifi-
cation task of limb movements.

III. METHOD

A. Dataset Description
Two public EEG datasets (namely datasets I and II) were

used to evaluate the performance of the proposed method
against the state-of-the-art and baseline methods [12], [59].
In both datasets, the EEG signals were downsampled to 256
Hz, and a notch filter at 50 Hz was applied to avoid the
influence of power line interference.

Both datasets have the same acquisition paradigm. Subjects
sat on a chair and a screen was in front of the subjects.
EEG signals were acquired from the channels on the brain
scalp. The channels used in the classification include FCz ,
C3, Cz , C4, CPz , F3, Fz , F4, P3, Pz and P4. At the start of
a trial, the screen displayed a cross. Two seconds later, a cue
appeared on the screen indicating a motion of the upper limb
which the subjects were then supposed to execute. In dataset I,
the executed motions include elbow flexion, elbow extension,
supination, pronation, hand open, hand close and the resting
state. Dataset II includes supination, pronation, hand open,
palmar grasp and lateral grasp. In both datasets, The number
of trials for each motion were 60 and 72, and the numbers of
subjects were 15 and 9, respectively.

Although both datasets have the same paradigm, the time
windows of the EEG signals in the two datasets are different.
In dataset I, the hand trajectory was simultaneously acquired
along with the EEG signals. The movement onset of the
executed motions can be located by the hand trajectory. The
time window in which the EEG signals will be used for
classification purposes lies between one second before the
onset and one second after the onset. In dataset II, however, the
hand trajectory was not recorded and there is no information
about the movement. Therefore, here the time window for the
classification corresponds to the two-second window after the
cue indicating the start of the executed motions.

The movement onset is located with the movement trajec-
tory in dataset I. The same localization process as in [27]
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TABLE II
NUMBER OF TRIALS AFTER TRIAL REJECTION IN DATASET I

Motion EF EE SU PR HC HO RE

Number 60 59 52 51 56 55 59

was adopted. The relationship between the hand trajectory,
action cue and movement onset is given in Fig.2(a). The 1-
order difference of the hand trajectory was filtered by a 1-
order Savitzky-Golay finite impulse response smoothing filter.
The time window length in the smoothing filter was set to 31.
The hand trajectory was then normalized by dividing by the
maximal absolute value. In elbow flexion and elbow extension,
the hand trajectory has a higher amplitude when the limb
moves. The location where the normalized trajectory equals
the threshold of 0.05 was the movement onset. Trials were
manually removed if the movement onset could not be located
because of noise contamination. In the resting state, a fake
movement onset was set to 0.5 s after the cue appeared on the
screen. Trials in the resting state were rejected if the variances
of normalized trajectory were larger than 0.02. In the other
four motions, the function f(x) = a ∗ exp(−(x−b

c )2) + d
was used to fit the smoothed and normalized trajectory by
tuning the parameters a, b, c, d. Trials were then rejected if
the parameters of the tuned function met at least one of the
following conditions: a < 0.05, c > 100 or d > 10. The
movement onset was set to the time point whose absolute
amplitude equalled 0.1. The original movement trajectories
around the located movement onset are shown in Fig. 2(b).
The average number of trials of each motion across subjects
are given in Table II. The detailed processing steps are given
in our code repository.

B. Binary FBTRCA

The proposed multi-class FBTRCA (mFBTRCA) is devel-
oped based on the binary FBTRCA (bFBTRCA). To present
the relationship these two methods, we first introduce the
structure of bFBTRCA and then detail how mFBTRCA is
developed based on bFBTRCA.

The bFBTRCA method is developed by incorporating filter
bank selection into the bSTRCA method. The key idea of bFB-
TRCA is to find the best frequency band in which the bSTRCA
method has the best classification performance. Instead of
selecting the best frequency band, bFBTRCA selects the best
features from features in all frequency bands. The bFBTRCA
method first divides EEG signals into multiple filter banks
in the low-frequency domain. In each filter bank, bSTRCA
calculates the canonical correlation pattern and uses them
as the features. In bFBTRCA, the features extracted using
bSTRCA in all filter banks are sorted and selected through the
minimum redundancy maximum relevance method. Finally,
the support vector machine classifies the selected features.
The relationship between bSTRCA and bFBTRCA is shown
in Fig. 3. The bFBTRCA method has three key points in the
classification: (1) the spatial filtering with task-related com-
ponent analysis, (2) the feature extraction from the canonical
correlation pattern, and (3) filter bank selection.

(a) Relationship between action cue, movement onset and hand trajectory.
The EEG signals for classification tasks are in a two-second time window.

(b) Motions and the corresponding hand trajectories in each trial, which is
located at the two-second window in Fig.2(a).

Fig. 2. Localization of the movement onset and the corresponding movement
trajectory around.

Fig. 3. Relationship between the structure of bSTRCA and bFBTRCA. The
STRCA in this figure is either the bSTRCA or the mSTRCA. Both bSTRCA
and mSTRCA have two steps: spatial filtering and similarity measuring. The
bFBTRCA or mFBTRCA is developed by applying bSTRCA/mSTRCA to
multiple banks and enabling feature selection on the features of these banks.
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1) Spatial Filtering: Because EEG signals are multi-
channel signals and the channels are isolated points on the
brain scalp, EEG signals naturally have a bad spatial quality.
Spatial filtering is commonly used to optimize the spatial
quality when processing EEG signals. A spatial filter is used
to find a matrix W ∈ RC×P , where C is number of channels
and P ≤ C. By multiplying the given EEG signal X ∈ RC×T

with the matrix W , the spatial-filtered signal XTW ∈ RT×P

is obtained. Here, T is the number of sample points. Compared
to the original EEG signal X , the dimension of the spatial-
filtered signals XTW is suppressed. The calculation methods
of the spatial filter differ for different brain activities. For
example, CSP is widely used in motor imagery, which aims
to discern between the channels with the biggest and smallest
variances [31]. In steady-state visual evoked potentials, the
discriminative canonical pattern matching method is used
to maximize the between-class difference and minimize the
within-class difference [60]. In the bSTRCA and bFBTRCA
methods, the task-related component analysis is used as the
spatial filter, thereby extracting the task-related components.

Task-related component analysis optimizes the signals based
on covariances of the EEG signals. The training set of EEG
signals is given as Xk = {Xk

1 ,X
k
2 , . . . ,X

k
Ik
}, where k is

the index of classes; for instance, in binary classification,
k = 1, 2. Ik represents the number of trials of class k. X
are multi-channel EEG signals of size C×T . The task-related
component analysis first computes the covariance of the intra-
trial and inter-trial of each class. The intra-trial covariance is

Ck
i = Xk

i (X
k
i )

T , (1)

while the inter-trial covariance is given by

Ck
i,j = Xk

i (X
k
j )

T +Xk
j (X

k
i )

T . (2)

The spatial filter is the combination of eigenvectors, which is
obtained by solving the following eigen equation:

max
ω

Jk =
ωTSkω

ωTQkω
. (3)

Sk is the sum of inter-trial covariances of class k

Sk =

Ik∑
i,j=1,i<j

Ck
i,j , (4)

and Qk is the sum of the intra-trial covariances of class k

Qk =

Ik∑
i=1

Ck
i . (5)

The eigen equation maxω Jk can be solved with the gen-
eralized Schur decomposition as the generalized eigenvalue
problem. The eigenvectors related to the maximal eigenvalues
are denoted as ωk ∈ RC×P , where P is the number of fetched
eigenvectors. The spatial filter of task-related component anal-
ysis, W , is the concatenation of eigenvectors of two classes
W = [ω1,ω2] ∈ RC×2P . The optimized calculation step of
the task-related component analysis can be found in [61].

2) Similarity Measurement: In MRCP, the grand average
MRCP is the mean of EEG signals across trials, denoted as:

X̂
k
=

Ik∑
i=1

Xk
i /Ik. (6)

When measuring the relationship between the grand average
MRCP, X̂

k
, and each of the trials X ∈ RC×T , bSTRCA

and bFBTRCA both use the canonical correlation pattern
to measure the similarity. The canonical correlation pattern
includes three correlation coefficients:

(1) Correlation between X and X̂
k
:

X∗ = X;Xk = X̂
k
; (7)

ρ1,k = corr(XT
∗ W ,XT

kW ); (8)

(2) Correlation between X and X̂
k

after canonical corre-
lation analysis:

X∗ = X;Xk = X̂
k
; (9)

[Ak,Bk] = cca(XT
∗ W ,XT

kW ); (10)

ρ2,k = corr(XT
∗ WBk,X

T
kWBk); (11)

(3) Correlation between X − X̂
k

and X̂
3−k

− X̂
k

after
canonical correlation analysis:

X∗ = X − X̂
k
;Xk = X̂

3−k
− X̂

k
; (12)

[Ak,Bk] = cca(XT
∗ W ,XT

kW ); (13)

ρ3,k = corr(XT
∗ WAk,X

T
kWAk); (14)

In the above equations, corr corresponds to the two-
dimensional Pearson correlation coefficient, and the function
symbol cca computes the canonical coefficients for the two
input data matrices. X̂

3−k
denotes the grand average MRCP

of the other class (k = 1, X̂
3−k

= X̂
2
; k = 2, X̂

3−k
= X̂

1
).

Because the canonical correlation analysis is used in the
feature extraction, the EEG signals must be z-normalized
before spatial filtering in bSTRCA [62], [63]. The correlations
between EEG signals X and the grand average MRCPs of two
classes are calculated in the binary classification. The number
of correlation features is six.

3) Filter Bank Selection: In bFBTRCA, the filter bank
selection consists of two steps: filter bank division and fea-
ture selection. After the z-normalization of the original EEG
signals, these are divided into subbands in the low-frequency
domain. The low cut-off frequencies of these subbands are
fixed to 0.5 Hz, while their high cut-off frequencies are in
the arithmetic sequence going from 1 Hz to 10 Hz with a 1
Hz step. Therefore, ten filter banks are used in our work.

In each filter bank, bSTRCA is used to extract features.
This feature extraction includes spatial filtering and correlation
coefficient extraction. The number of features is 6 in each
subband, giving a total of 60 features from all subbands.

The adopted feature selection method is the minimum-
redundancy maximum-relevance, which is used to select es-
sential features from the total 60 features. Mutual information
measures the mutual dependence between two variables, and
it quantifies the information from one variable by observing
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the other variable. In the minimum-redundancy maximum-
relevance, relevance is the mutual information between the
label and the features, while redundancy is the mutual in-
formation between two features. The minimum-redundancy
maximum-relevance method optimizes the sequence of fea-
tures by minimizing the redundancy and maximizing the
relevance. The selected features are then classified by the
binary support vector machine classifier.

C. Multi-class FBTRCA
The bFBTRCA method is designed to classify two states

of limb movement based on the differences between grand
average MRCPs of two states. When adapting the bFBTRCA
to solve the multi-class classification problem, the spatial
filter’s structure restricts the framework’s extension.

In the spatial filtering of binary classification, eigenvectors
ω1 ∈ RC×P and ω2 ∈ RC×P of two classes are concatenated
into the spatial filter W ∈ RC×2P used in bFBTRCA. In
the K-class classification, the size of the spatial filter W
is ∈ RC×KP , where K is the number of classes. In this
case, the number of channels KP after spatial filtering is
greater than the number of channels C of the original EEG
signals. After having been filtered with W ∈ RC×KP , the
EEG signals are not full-rank, and therefore contain more
redundant information than the original EEG signals before
spatial filtering. The framework of bFBTRCA is optimized to
fit with the multi-class classification.

This optimization includes two points: the spatial filter
and the similarity measurement. After the optimization, the
bSTRCA method can be used in the multi-class classification,
which is the multi-class standard task-related component anal-
ysis (mSTRCA) method. The mFBTRCA method is developed
by applying the filter bank selection to the mSTRCA method.
The structure of the mSTRCA is shown in Fig. 4, using three-
class classification as an example.

1) Spatial Filtering: The bSTRCA is a method developed
based on the grand average MRCP. Before optimizing the
frame of bSTRCA, it is necessary to clarify the relation
between bSTRCA and the grand average MRCP. The grand
average MRCP is the mean of EEG trials in the same class.
There are three kinds of inputs involved in the calculation of
the correlation coefficients in bSTRCA:

(1) each of the EEG trials before averaging
(2) the grand average MRCP of one class
(3) the grand average MRCP of the other class.
The binary classification is based on the differences between

the two grand average MRCPs. The features in bSTRCA use
the similarities between each EEG trial as well as the two
grand average MRCPs with correlation coefficients. The labels
of the EEG trials can be predicted by their similarity. However,
the noise in EEG signals are not eliminated by taking the mean
of all trials. bSTRCA uses the task-related component analysis
as a spatial filter to reject the task-unrelated components such
as noise from the original EEG signals. Therefore, the spatial
filter plays a main role in rejecting noise here, and is not
related to discriminating the classes of EEG signals.

In bSTRCA, the eigenvectors of two classes are obtained
by solving the eigen equation in Equation 3 and are then

concatenated into the used spatial filter. However, it is not
necessary to label the eigenvectors in the spatial filter, because
the filter is used for noise rejection and task-related component
extraction. Since the spatial filter is responding to the noise
rejection and is not related to the classification, the spatial
filter used in bSTRCA is modified such that it only removes
the information about classes in the spatial filter.

The summed-up inter-trial covariance Sk and the summed-
up intra-trial covariance Qk are obtained through Equations
4 and 5. The spatial filter for the multi-class classification is
found using the eigen equation

max
ω

J =
ωTSω

ωTQω
, (15)

where S =
∑K

k=1 S
k and Q =

∑K
k=1 Q

k. K is the number
of classes in the multi-class classification.

2) Similarity Measurement: In binary classification, the
performance is determined by the differences between the
grand average MRCP of two motions. When two grand
average MRCPs have large differences, this indicates that the
classification accuracy of the two motions is higher than that
with minor differences. To reduce the similarity between two
grand average MRCPs, a possible approach is to remove the
mean of the two from both grand average MRCPs. The differ-
ences between two grand average MRCPs are then maximized.
In the multi-class task, the mean of grand average MRCPs of
K motions are removed from the grand average MRCP X̂

k

and the input EEG signals X in Equation 7, 9 and 12

X → X − 1

K

K∑
k=1

X̂
k
; X̂

k
→ X̂

k
− 1

K

K∑
k=1

X̂
k
. (16)

The canonical correlation pattern consists of three correlation
coefficients for each class in multi-class classification. The first
two correlation coefficients are the same as the ones given in
Equations 8 and 11. The third one is given by Equation 14.
However, to fit with the needs of multi-class classification,
Equation 12 is replaced with

X∗ = X − X̂
k
;Xk =

1

K − 1

K∑
kk=1,kk ̸=k

X̂
kk

− X̂
k
. (17)

In Equation 12, Xk is the distance between X̂
1

and X̂
2
.

The distances between X and the grand average MRCPs,
namely X − X̂

1
and X − X̂

2
, are normalized by the

correlation with X̂
1

and X̂
2
. In the multi-class classification,

X̂
k

is given in Equation 17 to normalize the distance X∗.
In a K-class classification, there are K grand average

MRCPs X̂
k
. For each grand average MRCP, three correlation

coefficients are calculated. Therefore, there are 3K coefficients
in each filter bank. In the binary classification, K = 2 and
there are six features in each filter bank.

3) Filter Bank Selection: In the filter bank selection of
mFBTRCA, the same setting is used as the one presented in
Section III-B3. EEG signals are divided into ten filter banks,
and the minimum-redundancy maximal-relevance method is
used to optimize the sequence of features and select the best
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Fig. 4. Structure of the mSTRCA method for the three-class classification problem. This structure can be extended to a classification model for K classes,
where K ∈ Z+. The optimization of the bSTRCA includes two main points. The first is the optimization of the spatial filter, which avoids the dimensional
increase of EEG signals in multi-class classification. The second is the input of the correlation. The same components are removed from the signals after
spatial filtering when measuring the similarity between the grand average MRCPs and the EEG signals, as given in Equation 16. The proposed mFBTRCA
method incorporates the filter bank selection into mSTRCA. This procedure is given in Fig. 3.

features for classification. The selected features are classified
using the multi-class support vector machine method.

D. Comparison Methods

We compare the proposed method to both the state-of-the-
art methods and the baseline methods. The state-of-the-art
methods refer to the methods that have been proposed and
validated in previous researches. Because the neural network
is a universal solution to data processing and has no specific
model, we summarize previous neural network architectures
on EEG processing. The baseline methods are the networks
designed under the summarized architecture.

1) State-of-the-Art methods: The following is a brief intro-
duction to the compared state-of-the-art models on the multi-
class classification of limb movements. All the given methods
were implemented on the same datasets used in this paper.

a) mCSP+LDA [39]: The multi-class CSP (mCSP) is an
extension of the binary CSP used in motor imagery. In mCSP,
EEG signals are optimized with joint approximate diagonalisa-
tion, and independent components are chosen by maximizing
mutual information of the independent components and class
labels. The pre-processed results are classified by the linear
discriminant analysis.

b) SpoC+Ridge [64]: The source power comodulation
(SPoC) method extracts spatial filters and patterns by a con-
tinuous target variable. Features are classified by the ridge
regression classifier.

c) MDM [42]: The minimum distance to mean (MDM)
converts the multi-channel signals into points on the Rieman-
nian manifold, and predict the class of unlabelled trials by
Riemannian distance.

d) TSLDA [42]: The first step of the tangent space linear
discriminant analysis (TSLDA) method is also to maps EEG
signals onto the Riemannian tangent space. The covariance
matrices are vectorized and then classified by the linear
discriminant analysis.

e) SCNN and DCNN [43]: CNN has revolutionized com-
puter vision through learning from raw data. Its use has been
studied on decoding executed or imagined tasks by shallow
CNN (SCNN). Compared to SCNN, deep CNN (DCNN) has
a deep network architecture and a better fitting capability.

f) WaveNet [65]: The EEG WaveNet is a multi-scale
CNN that works for the detection of epileptic seizures. This
network consists of trainable depth-wise convolutions and
spatial-temporal convolutions.

g) HopeFullNet [66]: The HopeFullNet is a one-
dimensional CNN used in the classification task of motor im-
agery. This network has shown its state-of-the-art performance
in classifying four imagined movements and the resting state.

2) Baseline Methods: As EEG signals are multi-channel
time series, it is unavoidable to discuss their temporal char-
acteristics. RNN is a universal solution to the feature extrac-
tion of time series. Along with the state-of-the-art methods
presented above, our model is also compared with models
that combine the RNN and CNN layers. In previous EEG
signal analyses, CNN was used to extract features from EEG
data; the extracted features were then processed by the RNN
layers to extract the temporal features, and and finally the
fully connected layer was used as the classifier [67], [68].The
baseline method, convolutional-RNN-convolutional neural net-
work (C-R-CNN), follows the steps in the previous analysis
and includes three modules:
Module 1: CNN layers used to optimize spatial characteristics
Module 2: RNN layers used to capture temporal characteristics
Module 3: CNN layers followed by a fully connected classifier.
The model structure is given in Table III, where the batch size
is B and the number of classes is K. The sequence of the
output size is [batch, channel, high,width].

The RNN layer in Table III can also be replaced by either
the gate recurrent unit (GRU) layer or the long short-term
memory (LSTM) layer to achieve an improved performance.
Therefore, we have three baseline methods: (1) C-R-CNN,
(2) the convolutional-GRU-convolutional neural network (C-
G-CNN) and (3) convolutional-LSTM neural network (C-L-



9

TABLE III
THE MODEL STRUCTURE OF THE BASELINE METHOD

Module Layer Output Size

Input [B, 1, C, T ]

Module 1

ZeroPad2d [B, 1, C, T+31]
Conv2d [B, 8, C, T ]

BatchNorm2d [B, 8, C, T ]
LeakyReLU [B, 8, C, T ]

Conv2d [B, 16, 1, T ]
BatchNorm2d [B, 16, 1, T ]
LeakyReLU [B, 16, 1, T ]

Module 2 Permutation [B, T , 16]
RNN [B, 1, T , 32]

Module 3

Conv2d [B, 64, T //256, 1]
BatchNorm2d [B, 64, T //256, 1]

Flatten [B, 64*T //256]
Linear [B, 32]

LeakyReLU [B, 32]
Linear [B, 32]

CNN). The models of C-G-CNN and C-L-CNN correspond
to the model that replaces the RNN layer of C-R-CNN with
the GRU and LSTM layers, respectively. The three baseline
methods share the same network architecture.

GNN is the other approach to optimizing the spatial char-
acteristics of EEG signals. The channels of the signals are
regarded as nodes of the graph. GNN optimizes the spatial
quality of EEG signals by learning about the relation between
these nodes with graph knowledge. The latent correlation layer
in StemGNN is used to optimize the EEG signals in the C-
G-CNN model [69]. The attention mechanism in the latent
correlation layer is used to learn the latent correlations between
the multi-channel time series. The learned attention graph is
passed to the 4-order Chebyshev polynomial; thus, the output
graph is of size [4, C, C]. The input EEG signals of size [B,
1, C, T ] are weighted with the learned graph. Therefore, the
size of the latent correlation layer is [B, 4, C, T ]. The EEG
signals optimized with the latent correlation layer are then
passed to the C-G-CNN model, with the channel changed
to 4. This baseline model is referred to as Graph C-G-CNN
(GC-G-CNN) in the following sections.

3) Parameter Settings: The performance of the proposed
and the compared methods are evaluated by 10-fold cross-
validation. The compared methods contain various neural
networks, including SCNN [43], DCNN [43], Wavenet [65],
HopeFullNet [66] and the baseline methods. The compared
neural networks have the same hyper-parameters, including
batch size (50), learning rate (0.001) and training epochs (50).
The loss function is the cross-entropy, and optimized by Adam
optimizer. Both datasets are split based on the 10-fold cross-
validation. The performance of all these methods is evaluated
by the classification accuracy averaged from the 10 folds.
All statistical analyses were conducted without correction for
multiple comparisons.

IV. RESULT

In this work, the mFBTRCA method is proposed to solve the
multi-class classification problem of upper limb movements.
Two datasets are used to evaluate and compare the proposed
methods’ performance against state-of-the-art and baseline

methods. The results analysis consists of three parts: (1) the
performance comparison between bFBTRCA and mFBTRCA
in the binary classification task, (2) the evaluation of a three-
class classification including two limb motions and the resting
state, and (3) the multi-class classification performance eval-
uation. The first and second parts are evaluated and analyzed
with EEG signals in dataset I. In the third part, both datasets
are used to analyze the relationship between the classification
accuracy and the grand average MRCP of each motion.

A. Structure Comparison

This work optimizes the spatial filter and similarity mea-
surement of bFBTRCA such that the resulting mFBTRCA
method can be used in multi-class classification. Before ap-
plying mFBTRCA to multi-class classification tasks, it is
necessary to compare the performances of bFBTRCA and
mFBTRCA in the binary classification task. Therefore, the
bFBTRCA and mFBTRCA methods are applied to classify
motion pairs in dataset I.

Fig. 5 gives the classification accuracies summarized from
10 folds of 15 subjects and 21 motion pairs. Fig. 7 shows the
accuracy comparison of each motion pair. ’1’ refers to the case
that removing the mean of grand average MRCPs (Equation
16) is not used; ’2’ refers to the case that the Equation 16 is
used. In the spatial filter of both bFBTRCA and mFBTRCA,
the number of selected eigenvectors P is 3 [27].

We also test the nested cross-validation when determining
the selected eigenvectors P in mFBTRCA-Nested. Because the
mFBTRCA consists of filter banks, the optimal P in each filter
banks may be different. The mSTRCA is used to determine the
P for each filter banks. The mFBTRCA-Nested shows a better
performance than the other methods. In Fig. 6, the optimal P
of Subject 1 in 0.5∼10 Hz are visualized by a stacked column
chart. In the chart, the optimal P may be different between
two arbitrary motions. Therefore, compared to giving a fixed
value, determining P by nested cross-validation is a better
approach.

In Fig. 5, the use of Equation 16 increases the averaged
accuracy about 1% when the maximum accuracy is reached,
where the number of selected features is about 10. The nested
cross-validation increases the averaged accuracy about 1%. To
avoid further discussion on the hyper-parameters P and the
number of selected features, we use the nested cross-validation
to determine P and set the number of selected features to
the maximum. In Table IV, the averaged accuracies and p-
values are given when the number of selected features is the
maximum. The p-values is the results of two-sample t-test
between the nested mFBTRCA and the others. The chance
level is calculated with the dummy classifier with scikit-
learn package in python. Both bFBTRCA and mFBTRCA
methods achieve similar classification accuracies in the binary
classification task.

B. Three-class Comparison

This three-class comparison is carried out based on the
classification accuracy between motion pairs of movement
states and the resting state. In Fig. 8, the classification
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Fig. 5. Averaged accuracies across all subjects and folds. ’FBTRCA-1’
denotes that the Equation 16 is not used; ’FBTRCA-2’ denotes that the
Equation 16 is not used. In ’mFBTRCA-Nested’, the hyper-parameter P is
determined by nested cross-validation and the Equation 16 is used.

Fig. 6. The values of the hyper-parameter P determined by the nested-cross
validation in the frequency range 0.5∼10 Hz of Subject 1. The values of
P in this figure are conducted 10 folds and 21 motion pairs, respectively.
This hyper-parameter P of 10 folds are accumulated and stacked in the chart
considering the illustration effects.

performances of the proposed mFBTRCA method and the
state-of-the-art methods are given. Table V is the p-value
between mFBTRCA and the other methods, calculated with
two-sample t-test. The p-values between mFBTRCA and the
chance level are almost zeros, which are not presented in this
table. As can be observed, the SCNN and DCNN methods
have a comparable performance to mFBTRCA. However, the
process going from EEG signals to the classification features
in SCNN and DCNN is ambiguous due to the interpretability
of neural networks; we know that the performance of the deep
neural network is good, but do not know how the network
utilizes the information in the EEG signals. For the proposed
mFBTRCA method, on the other hand, it is clear how the
MRCP signals are transformed into features. The method
removes noise via the spatial filter and measures the similarity
via the correlation coefficients.

TABLE IV
ACCURACY AND p-VALUE COMPARISON IN BINARY CLASSIFICATION

Accuracy p-value

Chance Level 0.5197±0.0000 0.0619
bFBTRCA-1 0.7318±0.1242 0.5724
bFBTRCA-2 0.7342±0.1263 0.5898
mFBTRCA-1 0.7355±0.1233 0.5431
mFBTRCA-2 0.7376±0.1256 0.5845

mFBTRCA-Nested 0.7487±0.1250 -

C. Multi-class Comparison

In the results analysis of the multi-class comparison, the
performance of the proposed mFBTRCA method is compared
to the state-of-the-art methods and the baseline methods with
EEG signals from both datasets.

a) Overall Comparison: The overall performances of the
proposed mFBTRCA method and the compared models are
summarized in Table VI, where the accuracies are averaged
across all subjects and folds of each dataset. In this table, we
apply FBTRCA to 10 bands, which have the low cut-off of
0.5 Hz and the high cut-offs of a arithmetic sequence from
1 Hz to 10 Hz with step of 1 Hz. In dataset I, mFBTRCA
improves on the classification accuracy of SCNN by 6.03%
(p = 0.1258). Furthermore, in dataset II, mFBTRCA improves
on the classification accuracy of GC-G-CNN by 8.73% (p =
0.0736).

b) Between-class Analysis: This work aims to propose a
machine learning-based multi-class classification method and
reveal the relationship between the classification accuracy and
the grand average MRCP of each motion. The confusion
matrices and the correlation of the grand average MRCPs
of motion pairs are compared. Fig. 9 shows the confusion
matrices classified by the proposed mFBTRCA method. The
confusion matrices are calculated using the ’confusionmat’
function in MATLAB and are then normalized by dividing
by the summed-up values in each row. Fig. 10 shows the two-
dimensional Pearson correlation between the grand average
MRCPs of motion pairs, which is calculated using the ’corr2’
function in MATLAB. The grand average MRCPs used in the
calculation of the Pearson correlation are spatial-filtered using
the spatial filter W ∈ RC×P , and thus have the size RT×P .
The mean of all the grand average MRCPs are removed from
these grand average MRCPs.

In Fig. 10(a), it can be seen that the grand average MRCP
of elbow flexion is highly correlated with elbow extension.
The EEG signals of both motions are difficult to discriminate
with the classifier, as shown in Fig. 9(a). The resting state
has a significantly different grand average MRCP from the
other movement states, and thus the classification between
the resting state and one of the motions outperforms the
classification between two motions. Therefore, it is assumed
that the classification of limb movements is highly correlated
with the relationship between the grand average MRCPs.
The analysis of dataset II also supports this assumption in
Fig. 9(b) and Fig. 10(b). For instance, the supination and
pronation motions have a higher correlation between their
grand average MRCPs, and the same is true for the palmar
grasp and lateral grasp motions. Therefore, the classification
between supination and pronation and between palmar grasp
and lateral grasp achieves a worse performance than between
other motion pairs, e.g., between supination and lateral grasp.

V. DISCUSSION

The mFBTRCA method is developed by extending our
previous bFBTRCA method, which is a binary classification
model. However, there is a drawback involved when migrating
from binary to multi-class classification for the bFBTRCA.
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Fig. 7. Comparison of the classification accuracies between the bFBTRCA and mFBTRCA methods in the binary classification task. The abbreviations on
the x-axis refer to the motion names; for instance, ’EE’ is the abbreviation for elbow extension. The evaluation is based on the 21 motion pairs in dataset I.
Accuracies are averaged across ten folds of 15 subjects. The mFBTRCA method performs similarly to bFBTRCA in binary classification.

Fig. 8. Three-class classification performance comparison between the proposed mFBTRCA method and the state-of-the-art methods. The three classes in
this figure are the motion pairs of limb movements and the resting state. The labels on the x-axis represent the name of the motion pairs, and the name for
the resting state, ’RE’, is ignored. The mFBTRCA method has a comparable performance to the SCNN and DCNN methods.

TABLE V
THE p-VALUE OF THREE-CLASS CLASSIFICATION

EF-EE EF-SU EF-PR EF-HC EF-HO EE-SU EE-PR EE-HC EE-HO SU-PR SU-HC SU-HO PR-HC PR-HO

mCSP+LDA 0.0143 0.0016 0.0006 0.0079 0.0216 0.0108 0.0030 0.0029 0.0013 0.1504 0.0639 0.0146 0.0735 0.0603
SPoC+Ridge 0.0043 0.0004 0.0031 0.0009 0.0008 0.0013 0.0008 0.0015 0.0045 0.0368 0.0268 0.0199 0.0053 0.0061

MDM 0.0251 0.0018 0.0018 0.0131 0.0069 0.0507 0.0097 0.0160 0.0029 0.0997 0.0871 0.0446 0.0862 0.0626
TSLDA 0.0132 0.0180 0.0192 0.0382 0.0547 0.0133 0.0294 0.0552 0.0663 0.1970 0.1630 0.1339 0.1203 0.0421
SCNN 0.2793 0.3313 0.3570 0.3449 0.3270 0.2106 0.3649 0.3188 0.2157 0.3584 0.3937 0.2610 0.4876 0.3795
DCNN 0.2186 0.3967 0.3110 0.4279 0.3026 0.3527 0.4888 0.2453 0.2080 0.3852 0.3401 0.3884 0.4794 0.5751

WaveNet 0.0218 0.0012 0.0127 0.0021 0.0125 0.0009 0.0015 0.0055 0.0167 0.0637 0.0941 0.0654 0.0586 0.0055
HopeFullNet 0.2924 0.2424 0.3313 0.2140 0.1394 0.2066 0.3284 0.2837 0.1709 0.4383 0.3383 0.4301 0.3918 0.3317

The spatial filter in bFBTRCA is obtained by concatenating the
eigenvectors of two classes. In the multi-class classification,
the number of classes increases such that the number of
eigenvectors in the spatial filters also increase. However, the
number of eigenvectors in the spatial filter should be smaller
than the number of channels, as otherwise the spatial filtering
will increase the dimension along the channel axis of the EEG
signals while keeping the rank unchanged; in other words, it
would introduce useless information into the EEG signals.

The bFBTRCA method consists of three modules: spatial
filtering, similarity measuring and filter bank selection. In
the migration from the bFBTRCA method to the mFBTRCA
method, it is assumed that spatial filtering plays the role of
noise rejection, while the similarity measuring determines the

classes of the EEG signals. This assumption is based on the
processing of the grand average MRCP. The grand average
MRCP of a class is obtained by averaging the EEG signals
of that class. In MRCP signals, the class of the motions can
be discriminated by comparing the differences of the grand
average MRCPs. The purpose of averaging EEG signals is to
remove random noise from the original signals. Therefore, the
process of using the grand average MRCP to discern between
different motions has two steps, (1) removing irrelevant noise
from EEG signals and (2) discriminating classes by comparing
the grand average MRCPs. These two steps are spatial filtering
and similarity measuring, respectively.

The bFBTRCA method is migrated to mFBTRCA with this
assumption. The optimization has two steps: (1) remove the
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART AND BASELINE METHODS.
ALL THE METHODS ARE APPLIED ON THE SAME DATASETS (I AND II).

Method Performance (Mean±Std (p-value))

Dataset I (7 Classes) Dataset II (5 Classes)

Chance Level - 0.1594±0.0000 (0.0000) 0.2000±0.0000 (0.00007)
mCSP+LDA [39] 0.2313±0.0551 (0.0037) 0.2667±0.0797 (0.0559)
SPoC+Ridge [64] 0.2207±0.0497 (0.0006) 0.2387±0.0562 (0.0318)

MDM [42] 0.2550±0.0700 (0.0032) 0.2768±0.0756 (0.0681)
TSLDA [42] 0.2712±0.0631 (0.0053) 0.2892±0.0686 (0.1129)
SCNN [43] 0.3590±0.0645 (0.1258) 0.3083±0.0640 (0.1103)
DCNN [43] 0.3529±0.0740 (0.1287) 0.2975±0.0748 (0.0458)

WaveNet [65] 0.2027±0.0569 (0.00005) 0.2327±0.0561 (0.0053)
HopeFullNet [66] 0.3377±0.0774 (0.0835) 0.2292±0.0534 (0.0002)

C-R-CNN 0.3116±0.0705 (0.0374) 0.2971±0.0705 (0.0312)
C-L-CNN 0.3100±0.0654 (0.0254) 0.3121±0.0748 (0.0515)
C-G-CNN 0.3121±0.0696 (0.0184) 0.3083±0.0694 (0.0342)

GC-G-CNN 0.3177±0.0745 (0.0464) 0.3159±0.0736 (0.0726)

mFBTRCA 0.4193 ± 0.0780 0.4032 ± 0.0714

(a) Dataset I (7 classes) (b) Dataset II (5 classes)

Fig. 9. Confusion matrices in the multi-class classification task classified by
mFBTRCA. The values given here are the confusion matrices having been
normalized by dividing by the summed-up values in each row. Statistics are
averaged from all subjects and folds in each dataset. In the confusion matrix of
dataset I, it can be observed that the elbow flexion and elbow extension motion
pair cannot be clearly discriminated; however, the resting state is generally
well separated from other states. In dataset II, the supination and pronation
motion pair along with the palmar grasp and lateral grasp motion pair are
also not well-separated.

steps related to the class information in the spatial filtering, and
(2) reduce the similarity of the grand average MRCPs. The first
step involves calculating the spatial filter with the eigenvectors
given in Equation 15, and the second step involves removing
the mean of all grand average MRCPs from the spatial-filtered
EEG signals in Equation 16.

When calculating the correlation between each of the trials
and the grand average MRCPs, the two inputs are spatial-
filtered by task-related component analysis. Fig. 11 is an
example of EEG signals before and after spatial filtering. The

(a) Dataset I (7 classes) (b) Dataset II (5 classes)

Fig. 10. Two-dimensional Pearson correlation between the grand average
MRCPs of two motions in the multi-class classification task, classified using
mFBTRCA. Statistics are averaged from all subjects and folds in each dataset.
Because the sequence of two motions can be switched in the correlation
calculation, the correlation maps given in the figure are symmetric matrices.

signals are sorted in a descending sequence of eigenvalues
after spatial filtering. When the index of eigenvalues is greater
than three, the signals become flat. The signals in the first three
channels show distinguished fluctuation to other flat signals.
This is the reason to adjust the spatial filter when immigrating
the binary to the multi-class classification. In MRCP analysis,
P is determined to be around 3 when the movement onset can
be located. In steady-state visual evoked potential, task-related
component analysis is also used in the spatial filtering of the
EnsembleTRCA method [14]. The spatial filters in mFBTRCA
and the EnsembleTRCA are the same. The P in steady-state
visual evoked potential is set to 1 because of the high signal-
to-noise ratio of steady-state visual evoked potential. However,
the setting in MRCP signals is different because of the low
signal-to-noise ratio. P = 1 cannot cover all the task-related
signals. This is the reason why we don’t concatenate the spatial
filters of different classes as in steady-state visual evoked
potential.

Fig. 11. EEG signals before and after spatial filtering with task-related
component analysis.

Although task-related component analysis may not be the
most efficient tool to remove the noises, we compared it
to some spatial filters in our previous work. It shows the
best performance among the compared spatial filters [26].
Discriminative canonical pattern matching is the spatial filter
in both steady-state visual evoked potential and MRCP [12],
[60], [70]. Discriminative canonical pattern matching aims to
find a projection to maximize the differences of two classes.
Based on the results in [26], the performance of discriminative
canonical pattern matching is much worse than task-related
component analysis. Therefore, we concluded that maximizing
class differences by spatially filtering should be avoided.

In the calculation of the correlation coefficients, we remove
the mean of the grand average MRCPs from both EEG trials
and the grand average MRCPs in Equation 16. In mFBTRCA,
the classification performance highly relies on the differences
of these grand average MRCPs. A possible approach to
increase the differences is to remove the common components
of these grand average MRCPs. The simplest common com-
ponent is the mean of these grand average MRCPs. Fig. 12
shows the grand average MRCPs in channel Cz before and
after removing the mean of the grand average MRCPs. We
then calculate the correlation coefficients of the grand average
MRCPs (Cz) of motion pairs. In this figure, it shows that the
grand average MRCPs of the movement states are of high
similarity. After removing the mean of these grand average
MRCP, the correlations between motion pairs are reduced.

Now we can conclude the differences between the proposed
mFBTRCA and the EnsembleTRCA. Despite of the same spa-
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Fig. 12. The grand average MRCPs before and after removing the mean
of the grand average MRCPs, and the correlation coefficients of the grand
average MRCPs of the motion pairs. The time window of the EEG signals is
located between one second before and after the movement onset.

tial filter in two methods, the differences between mFBTRCA
and EnsembleTRCA consist of three points.
(1) The filter banks. The filter bank in MRCP signals is located
at the low-frequency bands. In mFBTRCA, we first divide the
signals into subbands in the low-frequency bands based on
our previous work [27]. In EnsembleTRCA, the filter banks
are not used.
(2) Added-up spatial filters instead of concatenation. As men-
tioned above, limited to the low signal-noise ratio of MRCP
signals, mFBTRCA adds up the covariances of all the class
and then solve the eigen-equation to get the spatial filter. In
EnsembleTRCA, the eigen-equations are solved for the covari-
ances of each class respectively, and then the eigenvectors of
all the classes are concatenated as the spatial filter.
(3) Optimized correlation features. In both mFBTRCA and
EnsembleTRCA, the averaged signals across trials of each
class (X̂

k
in Equation 6) are used as the templates to calculate

the correlation. In EnsembleTRCA, a template is averaged
of signals with a given frequency. The templates of Ensem-
bleTRCA are of low similarity because they are located at
different frequencies. However, in mFBTRCA, the templates
are the same with the grand average MRCPs and are of high
similarity. Therefore, mFBTRCA removes the mean of these
templates before calculating the correlation.

The mFBTRCA method achieves an equivalent classifi-
cation performance to the bFBTRCA method in the binary
classification task, as shown in Table IV. Because the binary
classification between a movement state and the resting state
(e.g., elbow flexion vs resting) has a higher classification ac-
curacy, we assume that the classification performance between
the motion pairs of the movement states will not fluctuate sig-
nificantly. mFBTRCA is compared to state-of-the-art methods
in classifying pairs of movement states and the resting state
(3 classes). The three-class classification accuracies are close
to those achieved in the binary classification, but with slight
decreases. For instance, the classification accuracy achieved

between elbow flexion, pronation and resting is close to the
one achieved between elbow flexion and pronation.

The state-of-the-art methods used in this work include
machine learning-based and deep learning-based methods. The
compared machine learning-based methods are geared towards
the multi-class classification of limb movements, such as those
made by the left/right hand, the foot or the tongue. The classi-
fication of these motions is based on certain brain activity, such
as motor imagery. The deep learning technique is a universal
solution to classification. Although the deep learning methods
are not specific to the classification of limb movements,
they have a better performance than the machine learning
methods. The proposed mFBTRCA method is also based on
machine learning. However, mFBTRCA takes advantage of
the differences of grand average MRCPs of motions. These
differences are the reason why different limb movements can
be classified. As a result, mFBTRCA performs better than the
deep learning methods in the multi-class classification.

Besides the state-of-the-art methods, baseline methods were
designed based on deep learning to be used for comparison
purposes. In the design of these, we used the same idea as
when designing the mFBTRCA method, namely using spatial
filtering (spatial) and similarity measuring (temporal). The
CNN layers were used to optimize the spatial characteristic of
EEG signals. The RNN layers were then used to extract the
temporal features. Finally, the CNN layer followed by a fully
connected layer was the classifier used to predict the classes of
EEG signals. We compared the mFBTRCA to the state-of-the-
art and baseline methods in the multi-class classification task
(more than three classes). As given in Table IV, mFBTRCA
shows an improved performance over the other compared
methods, including the baseline methods.

Although the proposed mFBTRCA method improves on
the performance of the state-of-the-art and baseline methods,
it also has its bottleneck. The method classifies the EEG
signals based on the differences in the grand average MRCPs
of motions. Importantly, when the grand average MRCPs of
motions are correlated or almost the same, mFBTRCA fails
to classify these motions, such as elbow flexion and elbow
extension. Furthermore, the movement onset localization is
a problem for armless or paralyzed patients in the actual
application of the brain-computer interface. Our future work
will focus on fusing the proposed mFBTRCA method with
the deep learning techniques and applying transfer learning to
help with the localization of the movement onset.

VI. CONCLUSION

We propose the mFBTRCA method for the multi-class
classification of upper limb movements. The proposed method
is comparable to the bFBTRCA method in binary classifi-
cation. In the multi-class classification task (3 classes and
more), mFBTRCA has a better performance than the other
compared methods, including SCNN and baseline methods
based on deep learning. In the 7-class classification of dataset
I, mFBTRCA improves on the performance of the best-
compared method by 6.03%. In the 5-class classification of
dataset II, the improvement is 8.73%. The mFBTRCA method



14

is developed by comparing the correlation between grand
average MRCPs, thus revealing the relationship between the
classification performance and the grand average MRCP. This
method is expected to be the baseline in future works for the
multi-class classification task of upper limb movements.
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