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ABSTRACT

Context. Astrophysical polarized foregrounds represent the most critical challenge in Cosmic Microwave Background (CMB) B-
mode experiments. Multi-frequency observations can be used to constrain astrophysical foregrounds to isolate the CMB contribution.
However, recent observations indicate that foreground emission may be more complex than anticipated. Not properly accounting for
these complexities during component separation can lead to a bias on the recovered tensor-to-scalar ratio.
Aims. In this paper we investigate how the increased spectral resolution provided by band splitting in Bolometric Interferometry (BI)
through a technique called spectral imaging can help control the foreground contamination in the case of unaccounted Galactic dust
frequency decorrelation along the line-of-sight (LOS).
Methods. We focus on the next generation ground-based CMB experiment CMB-S4, and compare its anticipated sensitivities, fre-
quency and sky coverage with a hypothetical version of the same experiment based on bolometric interferometry (CMB-S4/BI). We
perform a Monte-Carlo analysis based on parametric component separation methods (FGBuster and Commander) and compute the
likelihood on the recovered tensor-to-scalar ratio, r.
Results. The main result of this analysis is that spectral imaging allows us to detect systematic uncertainties on r from frequency
decorrelation when this effect is not accounted for in component separation. Conversely, an imager like CMB-S4 would detect a
biased value of r and would be unable to spot the presence of a systematic effect. We find a similar result in the reconstruction of
the dust spectral index, where we show that with BI we can measure more precisely the dust spectral index also when frequency
decorrelation is present and not accounted for in component separation.
Conclusions. The in-band frequency resolution provided by BI allows us to identify dust LOS frequency decorrelation residuals
where an imager of similar performance would fail. This opens the prospect to exploit this potential in the context of future CMB
polarization experiments that will be challenged by complex foregrounds in their quest for B-modes detection.

Key words. cosmic microwave background – inflation – ISM – data analysis

1. Introduction

This paper addresses one of the burning questions currently con-
cerning the CMB community: are there reliable strategies to val-
idate or invalidate a detection of primordial B-modes in the pres-
ence of complex, polarized, Galactic foregrounds ? The scope
of our paper is not to provide a comprehensive answer to this

problem, but to investigate a possible solution that exploits the
spectral imaging capability of an unconventional technique for
CMB polarimetry, called bolometric interferometry (BI) applied
to controlling interstellar dust foreground emissions residuals.

Indeed, the next generation of satellites like Litebird
(Hazumi et al. 2019) and PICO (Hanany et al. 2019) and ground-
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based experiments like Simons Observatory (Ade et al. 2019)
and CMB-S4 (Abazajian et al. 2022) aim at improving the con-
straint on the tensor-to-scalar ratio, r, at the level of 0.001 and
below. Accurate foregrounds (and systematic effects) removal is
already the main limiting factor.

To improve foreground removal, modern experiments are re-
lying on multi-frequency observations and on improved models
of astrophysical emissions. For example, there are many PySM1

(Thorne et al. 2017) models that have been developed with the
goal of simulating the effects of deviations from the single modi-
fied blackbody (MBB) emission conventionally assumed for the
Galactic dust thermal emission. The models d5 and d7 take into
account different dust grain compositions (Hensley & Draine
2017), while the models d4 and d12 describe the dust emission
as a sum of two or up to six single MBBs along each line-of-sight
(LOS) (Finkbeiner et al. 1999; Martínez-Solaeche et al. 2018).

This article focuses on the d6 model which introduces fre-
quency decorrelation along each line of sight by making Gaus-
sian realizations of a deviation from the MBB emission at each
frequency following the correlation matrix derived by Vansyngel
et al. (2018).

Frequency decorrelation of the dust emission arises from
spatial variation of the dust spectral energy distribution (SED)
over the sky as well as along the LOS due to the underlying
structure of the Galactic magnetic field. This effect is usually
quantified at the power spectra level by means of the correla-
tion ratio, Rℓ (Planck Collaboration et al. 2017). The most recent
observational evidence regarding this effect comes from Planck
Collaboration et al. (2017, 2020); Pelgrims et al. (2021); Ritacco
et al. (2023) and could affect polarimetric and spectral calibra-
tion in the case of wide beam instruments (Masi et al. 2021) as
well as cause bias on the tensor-to-scalar ratio (McBride et al.
2023; Hensley & Bull 2018).

If dust indeed does not behave as a simple MBB (as it is
usually assumed) but exhibits more complex spectral features,
like frequency decorrelation, we need some method to detect
the presence of foreground residuals in our results. This could
be achieved by comparing results from different sky patches, as
proposed by Aurlien et al. (2022), or by cross-checking with dif-
ferent component separation methods, such as parametric ones
(Eriksen et al. 2006; Stompor et al. 2008), blind one (Aumont
& Macías-Pérez 2007) or the moment expansion (Chluba et al.
2017; Vacher et al. 2022), some of which might be less sensitive
to foreground mismodelling.

Another possibility, which we illustrate in this paper, is to
use BI and its ability to discriminate frequencies in-band during
data analysis. This allows us to achieve a spectral resolution of
a few GHz2 and reanalyze the same data with different spectral
configurations. A variation in the constraint on r from one con-
figuration to another is a hint of a contamination at the level of
the tensor-to-scalar ratio due to component separation residuals.

In this paper we investigate the advantage of BI for fore-
ground removal and characterization by comparing the perfor-
mance in detecting dust frequency decorrelation of one of the
most advanced experiments to come, CMB-S4, with a simi-
lar, hypothetical experiment based on bolometric interferometry,
that we name CMB-S4/BI. We carry out the study with simula-
tions based on two different component separation codes: FG-

1 https://pysm3.readthedocs.io/en/latest/
2 Some level of in-band frequency sensitivity is actually achievable to
traditional imagers by using the small variations in the spectral proper-
ties of different detectors. This was successfully applied to map the CO
emission line (Planck Collaboration et al. 2014).

Buster (Stompor et al. 2008) and Commander (Eriksen et al.
2006, 2008). In the main body of this paper we focus on FG-
Buster simulations, while we report the study with Commander
in Appendix B. Because we propose a new methodology, we
neglected the impact of instrumental systematic effects in our
study.

The paper is organized as follows. In Sect. 2 we provide a
brief introduction to bolometric interferometry and to its state-
of-the-art, represented by the QUBIC experiment (Hamilton
et al. 2022, and references therein). Sect. 3.1 is dedicated to
the description of the simulated sky models, instrumental con-
figurations and the Monte-Carlo pipeline based on the FGBuster
(Stompor et al. 2008) component separation code. Here we also
describe a machine learning classification used to assess the
ability to detect residuals from foreground emissions in a sin-
gle realization. In Sect. 3.2 we compare the results in terms
of tensor-to-scalar ratio reconstruction from simulations with
conventional foreground models and with unaccounted Galac-
tic dust frequency decorrelation. We also discuss the perfor-
mance of the machine learning classification algorithm in terms
of its ability to detect r measurements contaminated by residual
dust emission. In Appendix A we present the results obtained
with FGBuster regarding the estimation of foreground parame-
ters while in Appendix B we discuss all the results obtained with
Commander.

2. Bolometric interferometry and QUBIC in a
nutshell

In this section we briefly describe the principles of BI, focusing
on a specific feature of this technique, called spectral imaging,
which is at the base of our study. We also provide the reader
with an overview of the QUBIC experiment, currently the only
experiment based on BI. The interested reader can find more
details on BI, QUBIC and spectral imaging in Hamilton et al.
(2022); Mousset et al. (2022); Torchinsky et al. (2022) while the
instrument is described in Piat et al. (2022); Masi et al. (2022);
D’Alessandro et al. (2022); Cavaliere et al. (2022); O’Sullivan
et al. (2022).

2.1. Principles of bolometric interferometry

Bolometric interferometry is a technique that combines the
use of bolometers, which are state-of-the-art wide-band cryo-
genic detectors providing high sensitivity, with the advantages
in terms of systematic effects control provided by interferometry
through the self-calibration technique, commonly used in radio-
interferometry (Cornwell & Wilkinson 1981). The application to
BI is detailed in Bigot-Sazy et al. (2013).

Figure 1 shows a schematic of the QUBIC instrument, high-
lighting the fundamentals of BI. The sky signal enters the cryo-
stat through an aperture window and is transmitted to a series
of filters, a step-rotating half-wave plate, a polarizing grid and
an array of paired back-to-back feed-horn antennas. The back
horns directly illuminate an optical combiner, which focuses the
radiation onto two focal planes through a dichroic plate.

When the instrument observes a distant point source along
the optical axis an interference pattern forms on the two focal
planes. The left panel of Fig. 2 shows a simulation of this pattern.
As a result, each focal plane element measures the sky through a
specific beam pattern called the synthesized beam shown in the
right panel of Fig. 2 as well as inFig. 4. The instrument observes
the sky signal convolved by the synthesized beam. The construc-
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tive or destructive interference of the incoming signal defines a
series of peaks and nulls, with properties that depend on the sig-
nal wavelength, λ, on the number of horns along the maximum
axis of the antenna array, P, and on the separation between two
consecutive horns, ∆h, as follows (Mousset et al. 2022):

θFWHM =
λ

(P − 1)∆h
, Θ =

λ

∆h
, (1)

where θFWHM is the half power width of the peaks and Θ is the
angular distance between the main peak and the first secondary
peaks.

Equation 1 shows, in particular, that the position of the sec-
ondary peaks is particularly sensitive to λ. As an example, in
the right panel of Fig. 2 we show a cut of the synthesized beam
at a fixed azimuthal angle for two frequencies: 140 GHz and
160 GHz.

Knowing how the multiple-peaked shape of the synthesized
beam evolves with frequency allows us to recover the sky signal
during data analysis at different frequencies within the physical
band. This is possible as long as two frequencies, ν1 and ν2, are
far enough that the secondary peaks are well-resolved, therefore
if Θ(ν2) − Θ(ν1) > θFWHM(

√
ν1ν2), which occurs for ∆ν

ν
≥ 1

P−1 .
We call this technique spectral imaging.

The dependence of secondary peaks on frequency allows
us to achieve a spectral resolution of a few GHz within the
physical band. Furthermore, because spectral imaging happens
at the data analysis level, it allows us to re-analyze the same
data with different spectral configurations, which can help us de-
tect biases in our results. This is an unique asset compared to
traditional imagers, that would need several focal planes cou-
pled to multichroic filters to achieve the same spectral perfor-
mance. A Fourier-transform spectrometer would suffer from a
noise penalty related to not observing all frequencies simultane-
ously.

In this context, our aim is to investigate how the increased
spectral resolution provided by BI can help in controlling the
contamination from Galactic foregrounds and constrain fore-
ground complexity in the quest for primordial B-modes detec-
tion, with a special focus on the Galactic dust emission.

2.2. The QUBIC instrument

QUBIC is the first CMB B-modes experiment based on bolo-
metric interferometry. The instrument observes the sky in two
frequency bands, centered at 150 GHz and 220 GHz, respec-
tively, with a 25% bandwidth. Each feed-horn array is made
by 400+400 back-to-back antennas and each focal plane is
equipped with 992 TES bolometers. QUBIC will observe from
the Alto Chorrillos site, in the Argentinian Andes, at about 5000
meters a.s.l. and will provide an upper limit on r < 0.015 at 68%
C.L. after three years of observations (Hamilton et al. 2022).

The first QUBIC prototype is referred to as the technolog-
ical demonstrator (TD), a reduced version of the instrument
to demonstrate bolometric interferometry with laboratory mea-
surements and sky observations. The QUBIC-TD uses the same
cryostat (Masi et al. 2022), HWP (D'Alessandro et al. 2022) and
polarizing grid as the final instrument, but will observe only
in the 150 GHz channel. It is equipped with smaller diameter
mirrors, a smaller feed-horn array made by 64+64 back-to-back
feed-horns and a smaller focal plane, made by 248 bolometers.

After extensive laboratory testing the QUBIC-TD was in-
stalled at the observation site during November 2022 (see Fig. 3).
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Fig. 1. Schematic of the QUBIC instrument showing the principle of
bolometric interferometry. The sky signal is received by an array of
back-to-back horns and re-imaged onto the bolometric focal planes
where the field interferes additively. A polarizer and a rotating half-
wave plate make the instrument sensitive to linear polarization.
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Fig. 2. Left panel: simulation of the interference pattern on the focal
plane generated by a monochromatic point source. Right panel: azimuth
cut of the synthesized beam (solid lines) at 140 GHz (blue line) and at
160 GHz (green line) for a detector at the center of the focal plane.
Dashed lines represent the beam pattern of a single feed-horn. One can
appreciate the frequency-dependent position of the secondary peaks.

Routine observations will start after commissioning. The in-
terested reader can find the details of the laboratory tests and
their results in: Hamilton et al. (2022); Mousset et al. (2022);
Torchinsky et al. (2022); Piat et al. (2022); Masi et al. (2022);
D’Alessandro et al. (2022); Cavaliere et al. (2022); O’Sullivan
et al. (2022).

The top-left panel of figure 4 (taken from Hamilton et al.
2022) shows the synthesized beam measured by one of the fo-
cal plane TES detectors compared to a simulation of the same
beam (top-right panel). The bottom panel of the same figure
(taken from Torchinsky et al. 2022) shows the synthesized beams
measured at various frequencies. These data show the multiple-
peaked shape of the synthesized beam with good agreement with
the theoretical predictions and the expected frequency depen-
dence of the secondary peak positions. The measured instrumen-
tal noise (detectors and read-out) is 2.06 × 10−16 W/

√
Hz (Piat

et al. 2022) and the median cross-polarization of the detectors is
0.12% (D’Alessandro et al. 2022).
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Fig. 3. QUBIC-TD in the Alto Chorrillos site. The cryostat is placed on
a movable mount to scan in azimuth and elevation. The system is placed
inside a motor-controlled dome that can be opened and closed.

Fig. 4. Top panel: synthesized beam measured for one detector at
150 GHz (left) compared with the simulated 150 GHz synthesized beam
for the same detector (right, from Hamilton et al. 2022). Bottom panel:
synthesized beam for one detector measured at various frequencies
(from Torchinsky et al. 2022).

3. Dust decorrelation with bolometric
interferometry and direct imaging

This paper aims to quantify the effect of various dust models with
increasing complexity on the component separation results and
demonstrate the benefits of spectral imaging in this regard. We
focus, in particular, on the LOS frequency decorrelation of ther-
mal dust, a phenomenon already observed in Planck data (Pel-
grims et al. 2021).

To quantify dust decorrelation, we follow Planck Collabora-
tion et al. (2020), and use the quantity Rℓ, defined in Eq. (2):

R
ν1×ν2
ℓ

=
C
ν1×ν2
ℓ√

C
ν1×ν1
ℓ

× C
ν2×ν2
ℓ

. (2)

Rℓ is the ratio between the crossed spectrum between two
frequencies ν1 and ν2 and the square root of the product of the
auto-spectra at these same frequencies. This ratio is close to 1
for completely correlated thermal dust. In our sky simulations

we can increase or decrease the level of complexity in the ther-
mal dust spectral energy density (SED) by tuning Rℓ to a value
farther or closer to one.

To assess the potential of BI, we compare the component
separation performance of CMB-S4 to a BI version of the same
experiment having the same sensitivity per unit bandwidth, but
allowing for a higher spectral resolution through band-splitting
thanks to spectral imaging. In the following subsections we
present the methods used for this comparison.

3.1. Methods

3.1.1. Simulated sky

Our sky model contains the CMB plus synchrotron and dust
emission foregrounds.

We simulated the CMB using angular power spectra pro-
vided by the fgbuster package that are based on the latest
Planck 2018 results3. We used the following two FITS files:

(i) Cls_Planck2018_lensed_scalar.fits in which B modes
are considered with r = 0 and lensing,

(ii) Cls_Planck2018_unlensed_scalar_and_tensor_r1.fits
in which B modes are considered with r = 1 and no
lensing.

In our simulations we used TT , EE and T E spectra taken
directly from the file (i), while the BB spectrum was obtained
by summing the BB spectrum from the file (i) multiplied by a
lensing residual of 0.1 with the BB spectrum from the file (ii)
multiplied by the considered value of r (either 0 or 0.006). Note
that such a simplified approach, neglecting the additional tensor
contribution to the TT, TE and EE spectra, is sufficient in our
case as we only perform the likelihood analysis on the BB spec-
trum.

For the foregrounds we considered the following models4:

1. model d0s0, which assumes a single modified black-body
(MBB) emission for the thermal dust and a power law emis-
sion for the synchrotron, with constant dust spectral index
across the sky, βd = 1.54, dust temperature, Td = 20 K, and
synchrotron spectral index, βs = −3, with no curvature.

2. model d1s1, derived from the Planck data post-processed
with the Commander code (Planck Collaboration et al. 2016)
for the dust component. Synchrotron emission is taken from
Haslam emission at 408 MHz in Remazeilles et al. (2015),
Haslam et al. (1982). The thermal dust is modeled as a mod-
ified black body with spatially varying temperature and spec-
tral index, synchrotron is modeled as a power law with spa-
tially varying spectral index with no curvature;

3. model d6s1. This model is derived from d1s1 with the in-
troduction of LOS frequency decorrelation in the dust emis-
sion following the approach described in Eq. (14) of Van-
syngel et al. (2018). The correlation length, ℓcorr, is a param-
eter defined by PySM to vary the degree of decorrelation: the
smaller the decorrelation length, the larger the decorrelation.

Whereas models d0s0 and d1s1 are fixed realizations, model
d6s1 results in a random realization of the SED in which the
dispersion is determined by the correlation length ℓcorr. Figure 5

3 Spectra can be accessed at https://github.com/fgbuster/
fgbuster/tree/master/fgbuster/templates
4 See https://pysm3.readthedocs.io/en/latest/#models for
more details about the models.
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Fig. 5. Dispersion of the dust SED for different correlation lengths of the
PySM d6 model normalized by the single MBB emission (d1 model).
The colored areas represent the statistical deviation from a MBB for a
given correlation length, evaluated over 500 realizations.

displays the dispersion of various SED realizations as a func-
tion of ℓcorr, showing that the dispersion increases with a shorter
correlation length.

We explore the effect of dust LOS frequency decorrelation
with a level of decorrelation consistent with current observa-
tions. Specifically, the range of correlation lengths used in our
study is ℓcorr ≥ 10, which corresponds to a decorrelation level
below 5% for all the simulated frequencies. This configuration
represents a conservative scenario with respect to the decor-
relation level measured by Planck (Planck Collaboration et al.
2017, 2020) in the same multipole range considered in our work
(ℓ ≤ 300 − see Fig. 6 for a comparison with Planck estimates).

3.1.2. Instrument models

The first instrument considered in our analysis is CMB-S4
(Abazajian et al. 2022), which will observe at 9 different fre-
quencies in the 20–280 GHz range to constrain both synchrotron
and thermal dust emissions. CMB-S4 goal will be the detection
of r at the level r > 0.003 with more than 5σ.

The second instrument is a version of CMB-S4 based on
bolometric interferometry (CMB-S4/BI), where each of the
bolometer-based (i.e. above 85 GHz) physical frequency band,
∆νi, can be subdivided into nsub sub-bands of width:

∆νBI
i =

∆νi
nsub
. (3)

If we now consider m frequency bands of CMB-S4, each one
subdivided in nsub sub-bands in CMB-S4/BI we can calculate the
sensitivity in each sub-band as:

σBI
j,i = σ j ×

√
nsub × ε, (4)

Fig. 6. Correlation ratio measured by Planck from the Half Mission
(HM) maps at 217 GHz and 353 GHz, compared to the same ratio ob-
tained from a simulation with the PySM CMB template plus the dust
models d0, d1 and various realizations of the d6 with ℓcorr = 10. Black
points are from Fig. 2 of Planck Collaboration et al. (2017), gray points
are from Fig. B.2 of Planck Collaboration et al. (2020), the red point
has been obtained from the values in the middle plot of the second row
in Fig. 18 of Planck Collaboration et al. (2020).

where σ j is the CMB-S4 sensitivity in the j-th sub-band within
i-th physical band, nsub is the number of sub-bands and ε is a
term introduced to account for the sub-optimality of bolometric
interferometry (for further details about BI sub-optimality see
Mousset et al. 2022).

Two approximations have been done regarding the instru-
ment models:

1. the noise is always considered to be white, although in CMB-
S4/BI we have added the multiplicative term ε to account for
the sub-optimality of bolometric interferometry. We know
that the noise of a bolometric interferometer is not com-
pletely white and this calls for specific component separation
techniques able to deal with correlated noise. These tech-
niques are currently being developed within the QUBIC col-
laboration.

2. we have neglected the angular resolution of the optical beam
to be consistent with the CMB-S4 reference paper. The phys-
ical beam affects the final sensitivity of both instruments but
it should not impact the generality of our results.

Figure 7 shows the bandwidths and sensitivities of some
among the tested experimental configurations. For each CMB-
S4 frequency interval above 85 GHz we have studied seven con-
figurations of CMB-S4/BI with nsub ranging from 2 to 8. Increas-
ing the number of sub-bands results in a sensitivity degradation
according to equation (4) with ε between 20% and 60% taken
from Mousset et al. (2022). Because we focus on dust decorrela-
tion we have not subdivided the synchrotron frequency bands so
that the first three intervals of the various configurations overlap.
Note that because the simulated CMB-S4 sky patch is centered
far away from the Galactic plane, we expect the correlations be-
tween dust and synchrotron to be negligible for the scope of our
study.
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Fig. 7. Polarization sensitivity of CMB-S4 and three examples of CMB-
S4/BI, with nsub = 3, 5, 7 respectively. Notice that the bands of the three
lowest frequency channels are identical for all the instruments. Because
our study focuses on dust decorrelation we have chosen not to split the
bandwidths of the synchrotron channels.

We emphasize that because this band-splitting is performed
at the data analysis level, one can explore various values of the
number of sub-bands nsub with the same dataset. Studying the
evolution of the resulting constraints as a function of nsub is the
core of this study.

3.1.3. Simulation pipeline

We describe here the simulation pipeline for the Monte-Carlo
analysis that we performed using the FGBuster parametric com-
ponent separation code. In Appendix B.1 we report the same in-
formation regarding the simulations performed with Comman-
der.

In the FGBuster analysis we considered the sky patch shown
in Fig. 8, that corresponds to the currently expected patch that
will be observed by CMB-S4.

CMB-S4

Fig. 8. The sky patch observed by CMB-S4, also used in our simula-
tions. The patch (highlighted in white) is centered in a relatively clean
sky area, as one can see from the dust map at 150 GHz plotted under-
neath.

We considered eight instrument configurations (see also
Fig. 7): the CMB-S4 configuration (parametrized follow-
ing (Abazajian et al. 2022)) and seven versions of CMB-S4/BI,
obtained by dividing each frequency band. We then applied com-
ponent separation and analyzed the cross-spectra of the resulting

Table 1. Parameters used for analyzing simulations with FGBuster

Map Nside . . . . . . . . . . . . . . . . 256

Multipole range . . . . . . . . . . . 21–335

∆ℓ . . . . . . . . . . . . . . . . . . . . . . . 35

Input r . . . . . . . . . . . . . . . . . . . 0, 0.006

Residual lensing fraction1 . . 10%

Sky fraction [%] . . . . . . . . . . 3%

Sky patch center2

[Equatorial coord.] . . . .
α = 0◦
β = −45◦

1This is the fraction of the lensing signal left in the
CMB map.

2Center of CMB-S4 sky patch.

maps using a uniform binning (see Table 1 for a summary of the
simulation set-up).

For each instrument configuration, the overall analysis chain
consisted in the following steps:

1. generate a CMB realization as described at the beginning of
Sect. 3.1.1;

2. generate a noise realization for each frequency channel in the
considered instrument configuration;

3. add the CMB and the noise to the foregrounds maps gener-
ated as described in Sect. 3.1.1.

4. apply component separation to the input maps. In some cases
we assumed the same model used to generate the input case,
in others we assumed a different model, to mimic a realis-
tic situation in which the actual foregrounds are not 100%
known and one might assume a model that does not com-
pletely describe reality.

5. perform a cross-spectra analysis between two noise realiza-
tions (each with half the exposure time) to recover the tensor-
to-scalar ratio, r. We calculated angular power spectra using
the NaMaster5 code (Alonso et al. 2019) with an apodization
radius of 4 deg.

In Table 2 we list the various cases studied in this work. Each
case was simulated with all the instrument configurations de-
scribed in Sect. 3.1.2 and Fig. 7.

Component Separation. We performed parametric component
separation modelling our data as follows:

dp = A · sp + np, (5)

where p is the pixel index, dp and np are vectors representing
the data and noise measured by the instrument frequency chan-
nels, sp is a vector containing the “true” sky values at the same
frequencies, and A is a mixing matrix that contains information
about the sky components (CMB, synchrotron and interstellar
dust). In our simulations we considered the dust temperature as
a known parameter, Td = 20 K. Thus, the only unknown pa-
rameters for synchrotron and dust emissions were their spectral
indices, βs and βd.
5 https://namaster.readthedocs.io/en/latest/

Article number, page 6 of 13



M. Regnier et al.: Identifying frequency decorrelated dust residuals in B-mode maps

Table 2. Cases analyzed in this work.

Input foreground model Model assumed in
component separation

d0s0 d0s0
d1s1 d1s1

d6s1

ℓcorr = 10
ℓcorr = 13
ℓcorr = 16
ℓcorr = 19
ℓcorr = 100

d1s1

FGBuster solves for the best spectral indexes, βs and βd,
given the data, dp, and the noise covariance matrix, N, follow-
ing the spectral likelihood approach of Stompor et al. (2008). It
is worth mentioning that to cope with computational constraints
(processing time and computer memory) and keeping the same
parameters as in Abazajian et al. (2022), in the case of d1s1
and d6s1 we reconstructed the spectral indices on maps with
Nside = 8, corresponding to a pixel resolution of about 7◦.

Tensor-to-scalar ratio estimation. The main goal of our study
is to asses how residuals caused by biased estimates of fore-
ground parameters impact the reconstruction of the tensor-to-
scalar ratio, r, which is the main parameter characterizing the
primordial CMB B-modes. We write the likelihood on r using a
Gaussian approximation:

−2 lnL(r) =
(
DBB
ℓ,exp − DBB

ℓ,model

)T
N−1
ℓ,ℓ

(
DBB
ℓ,exp − DBB

ℓ,model

)
(6)

where DBB
ℓ,exp and DBB

ℓ,model are the measured and theoretical angu-
lar power spectra, N−1

ℓ,ℓ is the inverse of the sum of the noise and
sample variance covariance matrices, and lnL(r) the likelihood
on r.

In the cases where we used the d6s1 model as the sky in-
put we assumed a different and simpler model in the component
separation, namely the d1s1 model. This approach allowed us
to evaluate a realistic situation in which the sky emissions are
more complex than we think, and the use of a parametric model
may result in a biased estimation of r. Therefore, in these cases
we performed the log-likelihood evaluation using the noise co-
variance matrix in Eq. (6), N, obtained from simulations without
frequency decorrelation in the dust emission.

3.1.4. Detecting dust decorrelation on a single realization

We used machine learning to test the ability of BI to detect fore-
ground residuals that may be present when the assumed fore-
grounds model is different from that describing the actual sky
emissions. That might occur, for example, if one assumes a d1s1
model when the sky is described by a d6s1 model. We therefore
explore the possibility to classify between contaminated and not
contaminated cases that both end up producing the same average
reconstructed r for an imager (described by the case in which we
do not split the physical band in sub-bands).

This ability is a key issue when an experiment detects a
tensor-to-scalar ratio that is significantly different from zero. In
this case there is only one realization (i.e., the actual measure-

ment) to understand whether there are unknown systematic ef-
fects biasing the value beyond the uncertainty set by the noise
plus the known systematic effects.

We carried out this test by performing a machine learning
classification based on a simple gradient boosted decision tree
(a GradientBoostingClassifier from the scikit-learn
Python library6) according to these steps:

1. produce 500 sky realizations with r = 0.0067 in which
the sky is generated with d1s1 and fitted with the same
model (we call this dataset d1-d1), this dataset is labelled
as "clean";

2. produce 500 simulations with r = 0, in which the sky is
generated with d6s1 (ℓcorr = 10) and fitted with d1s1 (we
call this dataset d6-d1), this dataset is labelled as "contami-
nated";

3. for each simulation and for each value of nsub calculate the
following two quantities: ρ(nsub) = r(nsub)/r(nsub = 1) and
σρ(nsub) = σ(r(nsub))/σ(r(nsub = 1)) (“training” dataset),
both with "clean" or "contaminated" label, depending on the
model used as an input. These quantities are those that dis-
criminate whether we have foreground residuals or not: if
ρ , 1 it means that the detection depends on the number
of sub-bands and, therefore, is likely to be affected by fore-
ground residuals;

4. train the network with 250 (d1s1, r = 0.006) and 250 (d6s1,
r = 0) randomly selected realizations from the training
dataset (using 100 cross-validation subsets);

5. calculate ρ(nsub) and σρ(nsub) for the remaining 250 (d1s1,
r = 0.006) and 250 (d6s1, r = 0) simulations (“test” dataset);

6. feed the trained network with the values calculated in step 5
to test its ability to classify the simulations as “clean” (con-
stant ρ(nsub)) or “contaminated” (variable ρ(nsub).

The result of this procedure is the so-called “confusion ma-
trix”, i.e., a matrix that compares the results from the classifica-
tion predicted by the algorithm with the true one.

3.2. Results

3.2.1. Reconstruction of the tensor-to-scalar ratio, r

Here we discuss the results of our simulations in terms of the re-
construction of the tensor-to-scalar ratio, r. The performance in
terms of foreground reconstruction is discussed in Appendix A
(FGBuster simulations) and Appendix B.2 (Commander simula-
tions).

The four panels in Fig. 9 show the histograms of the max-
imum likelihood estimates (normalized to the maximum and
smoothed with a kernel density estimator, KDE) for the recon-
struction of r as a function of nsub in four different cases.

Top-left panel. Here we have the CMB with rinput = 0 and d0s0
foregrounds. In this case the reconstructed r does not depend on
nsub and there is a small bias due to an E → B modes leak-
age caused by the power spectra computation on a sky patch,
where the spherical harmonics are no longer orthogonal. This
bias could be mitigated by increasing the apodization radius
of the mask at the expense of a smaller effective sky fraction
6 https://scikit-learn.org/
7 The value of r = 0.006 was chosen so that the average reconstructed
r matched the bias that would be obtained from a map with CMB with
r = 0 and d6s1 foregrounds removed assuming a d1s1 model with a
single reconstructed sub-band(see Fig. 11)
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(< 3%). This optimization, however, is outside the scope of the
paper.

Top-right panel. Here we have the CMB with rinput = 0 and
d1s1 foregrounds. Also in this case we see that the reconstructed
r does not depend on nsub, even if the complexity of the dust
emission is higher (the dust spectral index varies in the sky).
However, here we observe a slightly larger bias in r with respect
to the d0s0 case, caused by the aforementioned leakage and also
by the difference in pixel size of the reconstructed maps (Nside =
8) compared to the input sky (Nside = 256).

Bottom-left panel. Here we have the CMB with rinput = 0.006
and d1s1 foregrounds. This case is similar to the previous one,
the only difference being the value of rinput.

Bottom-right panel. Here we have the CMB with rinput = 0 and
d6s1 foregrounds fitted with the d1s1 model. The histograms
show that fitting with a model that does not account for fre-
quency decorrelation produces distributions that are larger for
smaller values of nsub. Also the mean value of the reconstructed
r obtained from such distributions varies, and becomes smaller
as nsub increases.
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Fig. 9. Normalized histograms of the reconstructed r as a function of the
number of sub-bands. Top-left: model d0s0 with rinput = 0. Top-right:
model d1s1 with rinput = 0. Bottom-left: model d1s1 with rinput = 0.006.
Bottom-right: model d6s1 with ℓcorr = 10 and rinput = 0.0.

In Fig. 10, for each of the four cases we plot the recovered
tensor-to-scalar ratio as a function of nsub.

The blue, orange and green curves refer to the case in which
we fit for the same dust model used to simulate the input sky. In
these three cases the recovered r does not depend on nsub, as one
would expect for a detection not contaminated by foregrounds.
The difference between the recovered r with respect to rinput that
we see in all the three cases is caused by the E → B leakage and
pixel size effects discussed above.

The red curve refers to the case in which the input sky con-
tains dust emission with frequency decorrelation while compo-
nent separation was performed ignoring this feature, assuming
the d1s1 model. In this case, the increase in the number of fre-
quency maps provided by BI allows us to better constrain the
spectral indices, thus reducing the bias as the number of sub-
bands increases. A classical imager (represented by nsub = 1)

would measure r ∼ 0.008 while a bolometric interferometer
would see this estimate reducing by increasing nsub. This would
indicate that the first value of r is an artifact due to the presence
of residual dust emission.
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Fig. 10. Reconstructed r and standard-deviation as a function of the
number of sub-bands in the case of unaccounted dust frequency decor-
relation (model d6s1 with ℓcorr = 10 and r = 0) compared to two cases
of no decorrelation (model d1s1): r = 0 and r = 0.006. On top of ex-
tracted r values and their standard deviation, we have overplotted the
shape of the distribution as a "violin plot".

Figure 11 shows the mean and standard deviation of the re-
constructed r for all the simulated dust models with rinput =
0, including d6s1 with various correlation lengths: ℓcorr. =
10, 13, 16, 19, 100. For the sake of simplicity, we only show four
instrument configurations: CMB-S4 and CMB-S4/BI with 3, 5,
7 sub-bands. As one can see, the advantage of BI in diagnosing
foreground residuals and therefore decreasing the bias on r is
maintained even in the case of smaller levels of dust frequency
decorrelation. As expected, in the limit of ℓcorr. = 100 the re-
sult is compatible with the case of a single modified black-body
(model d1s1).

3.2.2. Identifying foreground residuals on a single realization

Figure 12 shows the confusion matrix obtained by our train-
ing test procedure. The performance of our classifier is as fol-
lows (we adopted the convention “clean=negative” and “contam-
inated=positive” ):

– true negative rate of very close to 1 indicating that the re-
alizations with no dust residuals (dataset d1-d1 with r = 0
and r = 0.006), displayed a constant ratio ρ(nsub) and were
correctly classified as “clean”;

– true positive rate very close to 1 indicating that the realiza-
tions with dust residuals (dataset d6-d1 with r = 0), dis-
played a variable ratio ρ(nsub) and were correctly classified
as “contaminated”;

– low false negative rate of 2.9% ± 1.6% , indicating a very
low percentage of realizations with dust residuals that were
wrongly classified as “clean”. This is a very important figure
of merit that we want to minimize;

– low false positive (consistent with 0), indicating a very low
percentage of realizations without dust residuals that were
wrongly classified as “contaminated”.

Such high classification performance demonstrates that BI,
with its capability to measure r in several sub-bands, is a promis-
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Fig. 11. Summary of the result on r for an input r = 0 and all the simu-
lated foreground models (d0s0, d1s1 and several ℓcorr cases of d6s1).

Fig. 12. Confusion matrix representing our ability to classify between
our simulated data sets with dust frequency decorrelation (contami-
nated) or without (clean) using the measurements of r as a function
of nsub. We observe that the fraction of false negative (“contaminated”
data set incorrectly classified as “clean”) is close to zero.

ing solution to identify residuals in the clean CMB maps aris-
ing from frequency decorrelation in the dust emission. In such a
case, a classical imager lacks the frequency resolution to identify
this contamination, leading to a systematic uncertainty in the re-
constructed r that is well above the target sensitivity of CMB-S4.

4. Conclusions

In this paper we have shown how bolometric interferometry (BI)
has the potential to detect systematic effects caused by inter-
stellar dust in CMB polarization measurements when LOS fre-
quency decorrelation is present in dust emission and it is not
accounted for in parametric component separation algorithms.

Although there are ways for imagers to mitigate the prob-
lem of not precisely knowing the foreground emission, for exam-
ple through cross-checking with different component separation
methods, such as blind ones (Aumont & Macías-Pérez 2007) or
the moment expansion (Chluba et al. 2017; Vacher et al. 2022)
which might be less sensitive to foreground mismodeling, in this
paper we are proposing a new approach, that is based on a differ-
ent instrumental configuration, bolometric interferometry, which
can be helpful in case of a future B-mode claim to cross-check
the result at the instrumental level in addition to other cross-
checking at the component separation level.

We have carried out end-to-end simulations with two com-
ponent separation codes (FGBuster, discussed in the main text,
and Commander, discussed in Appendix B), reconstructing the
tensor-to-scalar ratio, r, from simulated skies containing CMB,
synchrotron and dust emissions, and instrumental noise. For dust
emissions we used three models of increasing complexity, one of
which contains frequency decorrelation.

We compared two instrument models, CMB-S4 and CMB-
S4/BI, the latter being a modified version of CMB-S4 that ac-
counts for the possibility of splitting each physical frequency
band in a variable number of sub-bands that can be chosen dur-
ing data analysis. This feature, which is unique to BI, allows us
to assess whether a measurement of r is biased by dust emis-
sion residuals or not. Instead, a Fourier-transform spectrometer
would suffer from a noise penalty related to not observing all
frequencies simultaneously.

Our results are consistent for the two codes and show that
with no frequency decorrelation both instruments yield the same
performance (the final precision and systematic uncertainty on
r is similar). If decorrelation is present and it is not accounted
for in component separation then an imager like CMB-S4 would
measure a biased value of r. This bias can be reduced with CMB-
S4/BI by reanalyzing the same data after splitting the band in
increasing number of sub-bands.

This paper is based on a case where the main contamination
of CMB, thermal dust, is a more complex than MBB. A model
such as an MBB is no longer sufficient to fully describe the con-
tribution of dust and create a bias on the tensor-to-scalar ratio r.
In a case like this, we show that BI can improve B-mode sensi-
tivity using a natural method based on software trick.

The decrease of the measured r with the number of sub-
bands, nsub, clearly indicates the presence of a dust-induced sys-
tematic effect, given that without dust residuals the detected r
does not change with nsub. In a situation like this a classical
imager would not have a means to classify the measurement as
“clean” or “biased”.

We tested the ability to detect biased r measurements also
using a machine learning approach, and we verified that assess-
ing the variation of the r measurement versus nsub allowed us to
classify clean and biased measurements with a rate > 95%.

Future developments will test this technique in more real-
istic situations (representative noise, inclusion of optical effects
and uncertainty on the knowledge of the instrumental spectral
response), assess the performance with various dust models and
explore new techniques of component separation, allowing us to
separate signals taking into account instrumental effects typical
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of bolometric interferometry in a more comprehensive and rep-
resentative way.
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Appendix A: Reconstruction of foregrounds
parameters

In our paper we focused on the reconstructed tensor-to-scalar
ratio, r, as it is the main quantity of interest. The level of system-
atic uncertainties in the reconstructed r, however, depend on the
reconstructed foregrounds spectral parameters and distributions.
Thus, in this appendix we focus on foregrouds and discuss the
distribution of the foregrounds spectral indices after component
separation.

In Fig. A.1 we show the normalized histograms of the differ-
ence between the reconstructed and input dust and synchrotron
spectral indices, ∆βd, ∆βs for the following three models: d0s0
(top row), d1s1 (middle row), d6s1 (bottom row), all with rinput =
0. Each histogram does not correspond to a particular pixel but
contains values from the whole map.
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Fig. A.1. Reconstruction of foregrounds spectral indices. Top: model
d0s0, rinput = 0. Middle: model d1s1, rinput = 0. Bottom: model d6s1,
rinput = 0.

In the case of d0s0 the model assumes a constant spectral
index all over the sky. Therefore we expect unbiased estimates
with a standard deviation related to the noise in the input fre-
quency maps. The results shown in the top row of Fig. A.1 con-

firm this expectation as we observe no bias on the reconstructed
spectral indices. We notice that the standard deviation slightly in-
creases with the number of sub-bands, nsub, because of the slight
sub-optimality inherent to spectral-imaging (parametrized by ε
in Eq. 4, see Mousset et al. 2022).

When spectral indices vary across the sky, as in d1s1, we
expect biases in the reconstructed spectral indices because we
only reconstruct the spectral indices on relatively large sky pix-
els (Nside = 8), while the input sky was simulated with spectral
indices that vary among smaller pixels (Nside = 256). Conse-
quently, averaging multiple spectral indices in large pixels in-
troduces a bias to the reconstructed spectral index. This bias is
responsible for foreground residuals in the CMB maps obtained
after component separation and produces the bias on r observed
in Fig. 9 and 10.

This is shown in the middle row of Fig. A.1. The bias due to
spatial-decorrelation appears as an enlarged spread of the distri-
bution with respect to the d0s0 case (notice the increased scale
of the x-axis in the middle row compared to the top row). Also in
this case we observe an increase in standard deviation with nsub
caused by the sub-optimality related to spectral imaging.

Finally, in the case of frequency decorrelation in the dust
emission (d6s1 model) spectral indices are no longer an accu-
rate description of the dust spectral behavior. As a result, if we
reconstruct βd using a d1s1 model we expect a much larger bias.
In this case, the increase in spectral resolution provided by spec-
tral imaging supplies extra information, allowing us to reduce
this bias.

This is confirmed by the results shown in the bottom row of
Fig. A.1. First, we see a much larger spread in the histograms
compared to the other two cases; second, we see that the spread
reduces significantly by increasing nsub. In this case the bene-
fit from spectral imaging more than balances the sub-optimality
effect and allows us to reduce the bias on the reconstructed spec-
tral index, correspondingly reducing the bias on r, as shown in
Fig. 10.

Appendix B: Simulations with Commander

Appendix B.1: Simulation pipeline

We describe here the simulation pipeline for the analysis per-
formed using the Commander code (Eriksen et al. 2006, 2008).
We generated 100 CMB power spectra using CAMB (Lewis
et al. 2000) from the set of cosmological parameters shown in
Table B.1.

We smoothed both the CMB and foreground signals with a
Gaussian beam with FWHM of 1 deg and applied the HEALPix
pixel window function at Nside = 64. The only model used to
generate the foregrounds is the d6s1 described in Sect. 3.1.1, in
particular setting the dust correlation length to ℓcorr = 10. We
considered a 3% sky patch around the center of the one observed
by QUBIC. The coordinates of the center of the patch are RA =
0◦ and DEC = −57◦. For computational reasons only four con-
figurations have been studied, namely considering 1, 3, 5 and 7
sub-bands.

For each simulated sky map, we generated a second version
of it by taking the same CMB, synchrotron and dust realization,
and a different Gaussian noise realization. The analysis chain is
the same outlined in Sect. 3.1.3, with the only difference that
here we used an apodization radius of 4.6 deg. We performed
the component separation sampling the amplitudes aCMB, as, ad
and the spectral indices βs, βd by means of the following Gibbs
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Table B.1. Set of cosmological parameters from the CAMB Python ex-
ample notebook in the CAMB documentation1.

H0 67.5

Ωbh2 0.022

Ωch2 0.122

ΩK 0

mν 0.06

τ 0.06

As × 10−9 2

ns 0.965
1https://camb.readthedocs.io/en/latest/CAMBdemo.html

Table B.2. Parameters used for analyzing simulations with Commander.

Number of CMB realiza-
tions . . . . . . . . . . . . . . . . . . . . .

100

Map Nside . . . . . . . . . . . . . . . . 641

Multipole range . . . . . . . . . . . 21–1282

∆ℓ . . . . . . . . . . . . . . . . . . . . . . . 35

Input r . . . . . . . . . . . . . . . . . . . 0

Residual lensing fraction . . . 100%3

Sky fraction [%] . . . . . . . . . . 3%

Sky patch center
[Equatorial coord.] . . . .

α = 0◦
β = −57◦

FWHM . . . . . . . . . . . . . . . . . . 1◦

1Limited by computational time.
2Limited by Nside = 64.
3The value of 100% means that all the lensing signal was left.

chain:

{aCMB, as, ad}
i+1 ← P(aCMB, as, ad | β

i
s, β

i
d, d) (7a)

βi+1
s ← P(βs | ai+1

CMB, a
i+1
s , a

i+1
d , β

i
d, d) (7b)

βi+1
d ← P(βd | ai+1

CMB, a
i+1
s , a

i+1
d , β

i+1
s , d) . (7c)

The spectral indices are sampled at Nside = 8 as for the FG-
Buster pipeline. We generated 1000 MCMC samples for each
input sky realisation, and discarded the first 100 samples as burn-
in. The two noise uncorrelated versions of the same sky realiza-
tion are associated to two parallel sampling chains. We computed
the cross-spectra between these two parallel chains, iteration by

iteration, in order to collect a set of 900 spectra for each CMB
realization considered in the analysis. We also averaged all of
the sampled maps produced in a single chain into a mean map,
and for every couple of parallel chains we computed the cross-
spectrum between the two mean maps.

After the component separation, we computed the likelihood
function for each mean maps’ cross-spectrum individually, ex-
ploiting the sample-based noise covariance matrix obtained by
all the power spectra from the corresponding sampling chain.

Appendix B.2: Results

From the probability distribution of the best fit values obtained
with the Commander pipeline, we find that the upper limit to the
estimation of a single realization of r is reduced with the number
of sub-bands, as shown in Figure B.1. The r bias and σ(r) are
greater than the FGBuster results due to the marginalization over
the foreground components.

Fig. B.1. Mean and standard deviation of the best fit distributions
obtained with the Commander pipeline, using the d6s1 model with
ℓcorr = 10 and r = 0.

Increasing the number of sub-bands also reduces the stan-
dard deviation of the spectral indices’ marginal distributions for
every pixel. Figure B.2 shows the comparison between the re-
constructed dust and synchrotron spectral indices for 1, 3 and 5
sub-bands on every pixel. This analysis has not been performed
for the 7 sub-bands configuration results because of data storage
issues. Here a single ∆β from the plotted distributions represents
the difference between the mean value of the marginal distribu-
tion on a single pixel for a given sky realization and the tem-
plate value in the same pixel from the model. These results are
in agreement with the FGBuster simulations.
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Fig. B.2. : Reconstruction of foreground spectral indices for the d6s1
model with the Commander pipeline.
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