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Abstract
Objective. Alzheimer’s disease is a progressive neurodegenerative dementia that poses a significant
global health threat. It is imperative and essential to detect patients in the mild cognitive
impairment (MCI) stage or even earlier, enabling effective interventions to prevent further
deterioration of dementia. This study focuses on the early prediction of dementia utilizing
Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks
(GCNs). Approach. Specifically, we developed a functional connectivity (FC) based GCN
framework for binary classifications using resting-state fMRI data. We explored different types and
processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed
the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal
controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the
potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The
results of the experiments revealed several important findings: First, the proposed GCN
outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best
average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and
the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC
performed slightly better than that with global FC generally. However, GCN using global graphs
with appropriate connectivity can achieve equivalent or superior performance to individual graphs
in some cases, which highlights the significance of suitable connectivity for achieving performance.
Additionally, the results indicate that the self-network connectivity of specific brain network
regions (such as default mode network, visual network, ventral attention network and
somatomotor network) may play a more significant role in GCN classification. Significance.
Overall, this study offers valuable insights into the application of GCNs in brain analysis and early
diagnosis of dementia. This contributes significantly to the understanding of MCI and has
substantial potential for clinical applications in early diagnosis and intervention for dementia and
other neurodegenerative diseases. Our code for GCN implementation is available at: https://github.
com/Shuning-Han/FC-based-GCN.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative
dementia that progressively disrupts neurocognit-
ive functions and poses a significant global health
threat [1, 2]. The predominant manifestations of
AD encompass diminished working and episodic
memory, coupled with disruptions in executive func-
tion. Additional symptoms contain deficits in atten-
tion, visuospatial orientation, language, and neuro-
psychiatric symptoms [3]. The progression to AD
usually includes three stages: (early) mild cognitive
impairment (MCI), moderate dementia, and severe
dementia. At present, there is no effective treatment
for AD and symptomatic treatments for demen-
tia could be effectual only in the early stage [4–6].
Therefore, it is imperative and essential to detect
patients in the MCI stage, or even earlier, enabling
effective interventions to prevent further deteriora-
tion of dementia.

In recent years, studies on magnetic reson-
ance imaging (MRI) have shown substantial util-
ity in understanding neuropathological mechanisms
behind and clinical diagnosis of dementia [7]. MRI is
based on the principle of absorption and emission of
energy in radio-free range of electron magnetic spec-
trum, which can show the states of the whole brain
non-invasively and safely. There are mainly two kinds
of MRI: structural MRI (sMRI) reveals the detailed
anatomical structure of the brain; and functionalMRI
(fMRI) depicts brain activity by detecting the tem-
poral changes in brain hemodynamics. fMRI provides
us significant information with a relatively high spa-
tial resolution (2 mm isotropic) and medium tem-
poral resolution (minutes) [8]. fMRI can be divided
into two categories: task-evoked fMRI (tfMRI) which
is collected while the subject is engaged in tasks,
and resting-state fMRI (rfMRI) which is collected
while the subject is resting. Spatial patterns of spon-
taneous neural activities and metabolism still exist
in the resting-state brain, in which the functional
connectivity (FC) between different brain regions
can be deduced [9, 10]. FC reflects the brain func-
tional organization, and its alterations are believed
to be associated with brain psychiatric disorders
[11].

Recently, graph theory and machine learning
techniques have been widely applied in neuros-
cience for brain analysis and disease detection [9,
12–15]. Devika and Ramana Murthy Oruganti [16]
developed a machine learning framework based on
support vector machine (SVM) to diagnose neurolo-
gical disorders using rfMRI. Helaly et al [17] used a
CNN architecture for the early detection of AD with
2D and 3D structural brain. Bi et al [9] explored
the functional brain network classification for AD

detection with deep features and extreme learning
machine. Ebrahimi-Ghahnavieh et al [18] applied
transfer learning for 2D convolutional neural net-
works (CNN) to sMRI for AD Detection.

Although the performance of deep learningmeth-
ods, such as CNN, has been promising in data with
Euclidean structure, it is difficult to extract represent-
ative features effectively from brain network graphs
due to their irregular Euclidean structures [19, 20].
As a result, a new field of geometric deep learn-
ing, graph neural networks (GNNs), has emerged,
which has given the possibility to effectively pro-
cess signals in the non-Euclidean geometry of graphs.
Recently more and more GNNs have been pro-
posed and applied in brain MRI analysis and dis-
order detection [21, 22]. Parisot et al [23] intro-
duced the spectral graph convolution network (GCN)
with rfMRI and non-imaging data, representing pop-
ulations as a sparse graph. This approach achieved
an accuracy of 69.5% for autism spectrum disorder
(ASD) detection on the ABIDE dataset and 77% for
predicting MCI conversion on the ADNI dataset.
Ktena et al [24] developed supervised Siamese GCN
to evaluate the similarity between a pair of graphs
and applied it to FC networks derived from rfMRI
data in the ABIDE dataset for the purpose of ASD
detection, resulting in an average accuracy of around
67%. Wang et al [25] presented an averaged global
FC based GCN architecture for rfMRI analysis and
applied it to the classification of ASD patients from
NCs on the ABIDE dataset, achieving the best average
accuracy with tenfold cross-validation at 70.7%. Tang
et al [26] proposed an averaged FC based contrastive
learning framework featuring an interpretable hier-
archical signed graph representation learning model.
This model was employed for AD prediction using
rfMRI data from the OASIS dataset, achieving an
accuracy of 77.51%. Lei et al [27] developed a multi-
scale enhanced GCN integrating the diffusion tensor
imaging (DTI) and rfMRI. This integrated model
was applied to the ADNI dataset for detecting MCI,
attaining an accuracy of 90.30%. Nevertheless, this
model underwent testing on a relatively small cohort
of 184 subjects, and awaits further validation. Despite
these advancements, there is limited research focus-
ing on the impact of different ways of calculating FC
on brain analysis results. Moreover, the performance
of GCN models in brain disorder detection remains
less than satisfactory. In addition, there are currently
few studies using MRI to detect the risk of MCI or
dementia, i.e. to predict MCI or dementia before it is
clinically diagnosed. This prognostic capability holds
critical significance in impeding or decelerating the
disease progression.

Taking the aforementioned into consideration,
this study presents a state-of-art approach in the field
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of neuroimaging based disease detection and pre-
diction. The key highlights of this research are as
follows:
A novel FC based GCN framework for dis-

ease detection using neuroimaging: We develop an
innovative FC based GCN framework for binary clas-
sifications utilizing rfMRI data. The GCN framework
is applied to two types of classification: (1) diagnosis
of MCI by rfMRI classification of NCs and MCI; (2)
prediction of dementia risk by classifying rfMRI of
patients not clinically diagnosedwithMCI, but exhib-
iting the potential for MCI, in comparison to the
rfMRI of NCs.
Impact of FC: This study places special emphasis

on understanding the effects of different FC types and
processing methods on the GCN framework’s per-
formance. In this paper, FC is regarded as a graph
and is considered in two aspects: on one side, we
compare the difference of using the global FC mat-
rix obtained from the training data versus the indi-
vidual specific FC matrices of each rfMRI data; on
the other side, we employ different processing meth-
ods for the FC matrices, and obtain the k nearest
neighbor (k-NN) graph, the threshold graph, the top-
p graph and the p-Minimum Spanning Tree (MST)
graph.
Insightful Network Analysis: The study con-

ducts an in-depth analysis of brain networks includ-
ing self-network and between-network connectivity.
This perspective enhances the clinical relevance and
impact of this study’s findings.

The rest of this paper is organized as follows.
Section 2 describes the utilized dataset and methods.
Section 3 presents the analysis results which are dis-
cussed in section 4. Finally, section 5 concludes this
work.

2. Materials andmethods

In this paper, we focus on implementing MCI dia-
gnosis and dementia risk predictionwith longitudinal
rfMRI data, and analyze the effects of different FC on
the classification results. In this section, we first intro-
duce the dataset for classification and how labels are
assigned. Then, we present the fMRI acquisition and
preprocessing methods, how to get different FC, and
finally the proposedGCN framework and the baseline
methods used for comparison.

2.1. Data
Longitudinal rfMRI series are adopted to analyze the
binary classification performance of the proposed
GCN framework. We label the rfMRI samples into
3 classes: NC, risking dementia (RD), and MCI,
based on the relevant clinical assessments of the
participants.

2.1.1. OASIS-3 dataset
The dataset from the Open Access Series of Imaging
Studies (OASIS)-3 [28] (www.oasis-brains.org) is
utilized to validate our proposed GCN framework.
The dataset includes longitudinal fMRI, neuropsy-
chological tests and clinical data of 1098 parti-
cipants (605 cognitively normal, 493 in various stages
of cognitive decline) aged 42–95 years. The clinical
dementia rating (CDR) scale is adopted to assess
the dementia status in the clinical data of OASIS-
3 dataset: CDR 0 indicating normal cognitive func-
tion, CDR 0.5 indicating very mild impairment,
CDR 1 indicating mild impairment, and CDR 2
indicating moderate dementia. All participants were
required to have a CDR⩽ 1 in the most recent
clinical core assessment, and once a participant
reached CDR 2, they were no longer eligible in the
study.

2.1.2. MRI sessions labeling
MRI sessions can be labeled according to the associ-
ated CDR values. However, clinical assessments were
conducted on different days from the neural ima-
ging scans, as illustrated in figure 1, and the time
gap between the MRI scan and clinical assessment
may exceed 1 year in the longitudinal OASIS-3 data-
set. In this current work,MRI sessions are categorized
into three groups: NC, RD, and MCI. An MRI ses-
sion is labeled as NC, if all of the clinical assessment
results of the corresponding subject are CDR= 0 in
the recorded data; an MRI session is labeled as RD,
if the latest clinical assessment result before the scan
is CDR= 0 and the subsequent clinical assessment
result switches to CDR⩾ 0.5, which indicates that
the subject transitioned to a dementia status dur-
ing the two consecutive clinical assessments, and that
they are at risk of dementia when undergoing the
MRI scan; an MRI scan is labeled as MCI, if the pre-
ceding and subsequent clinical assessment results are
both CDR⩾ 0.5. As a result, a total of 1831 MRI ses-
sions from 500 subjects are labeled as NC; 141 MRI
sessions from 219 subjects are labeled as RD; 503
MRI sessions from 68 subjects are labeled as MCI.
The mean ages of subjects NC, RD and MCI are
all approximately 68 years. The details are shown in
table 1).

In addition, the date differences of the 141 RD
MRI sessions from the date of MRI scan to the next
clinical assessment date were calculated. As shown
in figure 1, the shortest, longest and mean date dif-
ference in the RD group is 75, 1520 and 454 d
respectively. The long time intervals between theMRI
scan and the subsequent clinical assessment suggest
the need to label as RD the MRI session that falls
between two clinical assessments with changing CDR
results.

3
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Table 1. A statistic of the labeled fMRI.

Label of fMRI CDR
Number of

fMRI sessions Number of subjects
Average age of subjects
at each MRI scan

NC All CDR results of the subject are 0. 1831 500 68.62 (±3.57)
RD The latest clinical assessment result

before the scan is CDR= 0 and the
subsequent assessment switches to
CDR⩾ 0.5.

141 68 68.98 (±4.43)

MCI The preceding and subsequent
clinical assessment results are both
CDR⩾ 0.5.

503 219 68.04 (±4.23)

Figure 1. Histogram of time intervals between an MRI session and the subsequent clinical assessment (CDR ⩾ 0.5) for 141 RD
MRI sessions. The red line indicates the average time interval of 454 d. Within the RD group, the shortest and longest time
intervals are 75 and 1520 d, respectively.

2.2. Methods
We are focused on implementing the diagnosis of
MCI and risk prediction of dementia by the proposed
GCN framework. The GCN framework is based on
FC of the brain for binary classification. Meanwhile,
we analyze how different kinds of FC impact the
classification results by using different processing
methods for FC and using global or individual
FC.

This part presents a thorough exposition on the
fMRI acquisition and pre-processingmethods, as well
as the different FC processingmethods. The proposed
GCN framework and the baselines are then described
in detail.

2.2.1. fMRI acquisition and preprocessing
For subjects in each run, the fMRI data were scanned
in resting state for 6 min (164 volumes) using 16-
channel head coil of scanners with parameters:
TR= 2. s, TE= 27 ms, FOV= 240× 240 mm, and
FA= 90◦. The acquired initial rfMRI data were
preprocessed using the well-established fMRIPrep
pipeline [29]. The T1-weighted (T1w) image was cor-
rected for intensity non-uniformity and then stripped

skull. Spatial normalization was done through non-
linear registration, with the T1w [30]. Using FSL,
brain features such as cerebrospinal fluid, white mat-
ter, and grey matter were segmented from the refer-
ence, brain-extracted T1 weighted image [31]. The
fieldmap information was used to correct distortion
in low-frequency and high-frequency components
of fieldmap. Then, a corrected echo-planar ima-
ging reference was obtained from a more accurate
co-registration with the anatomical reference. The
blood-oxygenation-level-dependent (BOLD) refer-
ence was then transformed to the T1-weighted image
with a boundary-based registration method, con-
figured with nine degrees of freedom to account
for distortion remaining in the BOLD [32]. Head-
motion parameters (rotation and translation para-
meters of volume-to-reference transform matrices)
were estimated with MCFLIRT (FSL). BOLD sig-
nals were slice-time corrected and resampled onto
the participant’s original space with head-motion
correction, susceptibility distortion’s correction, and
then resampled into standard space, generating a
preprocessed BOLD run in MNI152NLin2009cAsym
space. Automatic removal of motion artifacts using
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Figure 2. Illustration of FC construction. The left part depicts various approaches for obtaining FC: (a) Approach for individual
specific FC. (b) Approach for global FC-of-avgROI. (c) Approach for global avgFC. The right part illustrates different graph
processing methods: (d) Method for k-NN graph. (e) Method for threshold graph. (f) Method for top-p graph; Method for
p-MST graph.

independent component analysis (ICA-AROMA)
[33] was performed on the preprocessed BOLD time-
series onMNI space after removal of non-steady-state
volumes and spatial smoothing with an isotropic
Gaussian kernel of 6 mm full-width half-maximum
(FWHM).

2.2.2. FC construction
The preprocessed BOLD-level rfMRI series are aver-
aged into 100 ROIs defined from Schaefer atlas [34]
and then standardized by z-score. Finally, the dimen-
sion of each fMRI session is 164× 100 (100 regions
with a length of 164 time samples each). The brain
FC can be obtained from rfMRI and modeled as
graphs, which describe the statistical time-series cor-
relations between brain regions of interest (ROIs). In
this paper, we analyze how different types of FC influ-
ence the prediction results. The difference of FC is
reflected in two aspects, as illustrated in figure 2: one
is the different FC matrices, individual specific FC
matrices obtained from each fMRI data versus global
FC matrix obtained from the training data, for both
training and testing data; the other is the different
processing methods used to obtain the FC matrices.

• Pearson correlation coefficient (PCC)

To obtain the FC matrices of ROIs, the PCC between
the fMRI time series of each pair of brain regions is
calculated as

PCC(x,y) =
cov(x,y)

σxσy

=

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2

(1)

where x and y are the time series of two brain regions
obtained from fMRI data; n is the time series length;
cov(x,y) is the covariance of x and y; σ is the standard
deviation of a variable; x and y are the mean value of
x and y respectively [9].

The set of PCC values forms the whole-brain FC
matrix for each subject, characterized by symmetry
and a theoretical range from −1 to 1: a value close
to −1 indicates anti-correlation between the pair of
the time series; a value close to 1 indicates strong cor-
relation between the pair of the time series [35, 36].
In practice, the original FC matrix typically does not
contain values equal to−1, and its diagonal elements
equal to 1. However, we uniformly assign zero values
to the diagonal elements of the FC matrices, facilitat-
ing subsequent normalization processing. There are
100 regions in the ROIs, thus the shape of FC matrix
is 100× 100.

• Approaches for obtaining different types of FC
matrices from training data

The left side of figure 2 shows the approaches for
obtaining different types of FCs. Individual specific
FC matrices can be derived from each fMRI data by
directly calculating the PCC, as shown in figure 2(a).
Meanwhile, a global FC matrix for training and test
fMRI samples is generated from training samples
by different approaches: In one approach, a global
FC matrix is obtained from the standardized aver-
age data of the training fMRI samples (denoted as
FC-of-avgROI), as shown in figure 2(b). In the other
approach, we consider the average PCC of all PCC
matrices from the training fMRI samples (denoted
as avgFC) as the global FC matrix, as shown in
figure 2(c).

5



J. Neural Eng. 21 (2024) 016013 S Han et al

Figure 3. The proposed GCN framework.

It should be noted that: (1) all the matrix aver-
aging operations are across subjects; (2) the second
approach of the global FC was also used in the
baseline; (3) the individual FC and the two types
of global FC, derived through PCC computation,
undergo further processing using the methods out-
lined in the right part of figure 2 ‘Different graph
processing methods’.

• Different graph processing methods

To analyze how different types of graphs impact the
classification results of GCN, we apply different pro-
cessing methods to the FC matrix obtained from the
fMRI time series, as shown in the right part of figure 2.
In the firstmethod, we take the k largest values in each
row of the FCmatrix with absolute values as the k-NN
graph, as shown in figure 2(d). In the secondmethod,
the absolute FC undergoes Min–Max normalization,
scaling its values to the range [0− 1] for consistent
thresholding, referred to as normalized absolute FC
(NAFC). Subsequently, thresholding is applied on the
NAFC matrix (denoted as threshold graph), as illus-
trated in figure 2(e).

To further explore the effect of graph connectiv-
ity on our model, we implement two additional
methods. The third method (figure 2(f)) constructs
the top-p graph, which is the symmetric matrix of
the top-p percentage values of the upper triangu-
lar NAFC matrix, without considering whether the
graph is fully connected or not. In the fourth method
(figure 2(g)), the fully connected p-MST graph is
generated based on MST [37]. MST is a unique
acyclic subgraph that connects N nodes with (N-1)
edges. By first finding the MST and adding edges
to this backbone, we ensure that resulting graphs
will be fully-connected [38]. Since the p-MST graph
is fully connected, the smallest percentage (p) of
MST graph in the upper triangular matrix is (N−
1)/[(N− 1)N/2] = 2%, where N equals 100.

2.2.3. Graph neural network (GNN)
Graphs [39] are a kind of non-Euclidean data struc-
ture composed by a set of nodes and edges, where
nodes represent objects and edges represent the rela-
tionship between objects. Brain FC can be modeled
as graphs, where nodes represent ROIs and edges

correspond to correlations in activity between these
ROIs [40–42]. GNNs [21, 43] have recently become
a widely used machine learning tool in graph analysis
due to their persuasive performance. The GNN archi-
tectures effectively combine node features and graph
topology to build distributed node representations
[44]. In this work, we develop a novel framework
of GNN for binary classification of different sorts of
fMRI data, in which the rfMRI time series of brain
ROIs are directly regarded as the node features and
the FC as the graph topology.

• The proposed GCN

The proposed GCN framework is implemented on
the basis of the PytorchGeometric (PyG) library [45],
which contains various GNN models and graph pre-
processing methods to easily build and train GNNs.
The designed GCN framework (shown in figure 3)
contains five graph convolutional layers based on
GraphConv [46]. The nonlinear activation function
Rectified Linear Unit (ReLU) [47] layer defined as
f(x) =max(0,x) follows after each of the first 4 graph
convolutional layers (GCLs), and the input of the last
GCL layer is the outputs of the first 4 layers. The fifth
GCL includes a batch normalization level to make
the GCN framework faster and more stable. Then the
global mean pool or global average pool is followed
to avoid overfitting and make the framework more
robust. To further avoid overfitting, we applied a dro-
pout layer in which output data are randomly set to
zero with a certain probability.

In the proposed GCN framework, the Adam
algorithm [48] is used as the optimizer, and the
cross-entropy loss is performed as the loss function.
The proposed GCN framework is applied for two
kinds of classification with global FC or individual
FC, illustrated in figure 4. In the GCN classification
with global FC, see figure 4(a), the inputs of the
GCN framework consist of individual time series of
ROIs, each accompanied by the same shared global
FC derived from the training ROIs, as described
in ‘Approaches for obtaining different types of FC
matrices from trainingdata’. Additionally, themodel
is provided with the corresponding labels for each
sample. On the other hand, in the GCN classifica-
tion with individual FC, depicted in figure 4(b), the
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Figure 4. Two types of GCN classification with global FC or individual FC. TSi denotes the ith individual time series of ROIs; Li
denote the corresponding ith label for each sample TSi. In the GCN classification with global FC, all time series of ROIs share the
same global FC derived from the training ROIs. In the GCN classification with individual FC, each sample TSi is paired with its
specific FCi.

inputs comprise individual time series of ROIs, each
pairedwith its specific FC generated from the respect-
ive ROI. Corresponding labels for each sample are
also included.

• Baselines

To provide a basis for comparison, we adopt two
baselines: the Support Vector Machine (SVM) using
the radial basis function (RBF) kernel [49], and the
GCN architecture for fMRI analysis developed by
Wang et al [25] in 2021.

The baseline GCN architecture with avgFC con-
sisted of 5 convolutional layers, one recurrent neural
network (RNN) layer and a Softmax layer. In the
baseline paper, the GCN was applied for ASD clas-
sification and achieved the best average accuracy of
70.7% (max 79.0%, min 66.7%) when k= 3 (among
3, 5, 10, and 20) with 10-fold cross validation.

We reimplement the baseline GCN architecture
and apply it to the OASIS-3 dataset using all recom-
mended parameters from the original paper. In the
current study, a 10-fold cross validation strategy is
adopted to evaluate the performance of the GCN
framework which is set to be the same when apply-
ing the baseline method to OASIS-3 dataset.

3. Results

We validate the effectivity of the proposed GCN
framework on OASIS-3 dataset for the diagnosis of
MCI and risk prediction of dementia based on dif-
ferent kinds of FC with rfMRI series of ROIs. In this
section, we first present the configurations of the pro-
posed GCN framework. Then, we provide all the clas-
sification results: (1) MCI vs. NC classification res-
ults; (2) RD vs. NC classification results.

3.1. Configurations
We used the labeled rfMRI data from the OASIS-3
dataset as described in section 2.1. The shape of each
rfMRI series is 164× 100. To maintain the data bal-
ance, only 503 randomly selected NC andMCI rfMRI
samples, respectively, are used forMCI detection; and
141 randomly selected NC and RD rfMRI samples,

respectively, are used for MCI risk prediction. 10-
fold cross validation method is used to evaluate the
designed GCN framework on OASIS-3 dataset. To
assess the impact of variations in the FC matrix on
the outcomes, we varied the number of nearest neigh-
bors k (1, 2, 3, and 4) and the threshold value (0.7, 0.8,
0.9, 0.95, and 0.99) for FC matrix processing. From
section 3.2.2, it is observed that when threshold⩽ 0.9,
there is a consistent trend of increasing accuracy with
threshold increments. We are interested in exploring
the impact of higher thresholds on the outcomes and
we specifically examine the threshold of 0.99 as an
extreme case.

Code of the proposed GCN framework is imple-
mented based on Python, and the GCN structure is
realized by PyTorch based on PyG. In our experiment,
each convolutional layer is designed with an output
dimension of 128 to effectively capture intricate pat-
terns while considering computational constraints.
The choice of a learning rate is a delicate balance: a
higher value risks overshooting the optimal solution,
whereas a lower value may lead to slow convergence
or entrapment in local minima. After careful consid-
eration, we set the learning rate to 0.001. To prevent
overfitting and encourage the learning of robust fea-
tures and the generalization of GCN, a dropout rate
of 0.5 is employed. The model undergoes training for
100 epochs to attain optimal accuracy. Additionally, a
small batch size of 8 is chosen to expedite convergence
and minimize memory usage.

The brain networks of different global graphs in
one fold are visualized with Brainnet viewer [50].
The brain networks are grouped into seven canonical
functional networks defined by the 7 Yeo networks
[51]: visual network (VIS), somatomotor network
(SMN), dorsal attention network(DAN), ventral
attention network (VAN), limbic network(LIM),
frontoparietal control network (FPC), default mode
network (DMN).

3.2.MCI vs.NC classification results
As stated before, in order to better understand the
impact of different FC, the proposed GCN utilizes
the graphs of global FC (avgFC or FC-of-avgROI) or
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Figure 5.MCI vs. NC results of the proposed GCN framework with k-NN graph. The black dot in the box presents the average
value in the 10-fold cross validation results.

individual FC, and then the graphs are processed as
k-NN graph, threshold graph, top-p graph, p-MST
graph, respectively.

3.2.1. Results of GCN with k-NN graph
We implement the MCI vs. NC classification of the
proposed GCN with k-NN graphs obtained from
individual FC, non-absolute individual FC, global FC
of avgFC and FC-of-avgROI. Especially, we also util-
ize the non-absolute individual FC here to demon-
strate the superiority of GCN with absolute FC over
that with non-absolute FC. It should be noted that
absolute FC are used as the default in this article.
We compare the performance of our proposed GCN
with the baseline GCN framework and SVMmethod.
The experimental results are shown in figure 5, which
illustrates that: (1) The proposed GCN outperforms
both the baseline GCN (best average accuracy of
68.6% when k= 1) and SVM (average accuracy of
56.8%) in terms of accuracy. Our proposedGCNwith
k-NN graphs achieves the best average accuracy of
80.3% with absolute-individual FC when k= 1. (2)
The proposed GCN with k-NN graphs exhibits dif-
ferently compared to the baseline GCN. While the
accuracy of the baseline GCN increase as k increase
and achieve the best average accuracy at k= 3 (the
same as in ASD classification in the baseline paper),
our proposed GCN’s performance with individual or
global FC declines as k increases. (3) The proposed
GCN with absolute individual FC performs slightly

better than that with the non-absolute individual FC.
(4) Our proposed GCN with individual FC performs
slightly better than that with global FC. The use of
global avgFC or FC-of-avgROI exhibits negligible dif-
ferences for the proposed GCN with k-NN graphs.

Brain networks of k-NN graphs of avgFC or FC-
of-avgROI are displayed as figure 6. It is important
to note that the k-NN graphs are non-symmetrical
matrix and cannot guarantee the full connectiv-
ity. In this figure, there are only 50 and 45 edges
in avgFC and FC-of-avgROI as k= 1, respectively.
From the brain networks, it can be observed that:
(1) Increasing k leads to more edges in both avgFC
and FC-of-avgROI brain networks. This highlights
an important finding that excessive connectivity can
have a detrimental effect on improving classification
performance, which is evidenced by the diminish-
ing performance results as the number of connectiv-
ity (k) increases. (2) The brain networks of k-NN
avgFC and FC-of-avgROI show little difference for
each value of k, which can explain the negligible
difference of the accuracy between avgFC and FC-
of-avgROI with same k. (3) The brain networks of
avgFC involve a slightly larger number of ROIs than
FC-of-avgROI when k= 1,2, and the average accur-
acy of GCN with avgFC are marginally higher than
that of GCN with FC-of-avgROI. This finding illus-
trates that graphs involving a greater number of nodes
may contain more valuable information for GCN
classification.
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Figure 6. The brain networks of k-NN avgFC or FC-of-avgROI. The seven-colored nodes are indicative of seven grouped
networks (VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network;
LIM, limbic network; FPC, frontoparietal control network; DMN, default mode network), while color-coded links denote
self-network connectivity and grey links denote the between-network connectivity.

3.2.2. Results of GCN with threshold graph
The MCI vs. NC classification performances of the
proposed GCN with threshold graph derived from
individual FC, global FC of avgFC or FC-of-avgROI
are reported in figure 7. It can be observed that: (1)
As the threshold value increases, the accuracy of GCN
with FC-of-avgROI performs differently from that
of GCN with individual FC or avgFC. (2) The aver-
age accuracy of GCN with FC-of-avgROI graphs are
notably lower compared to that of GCN with indi-
vidual FC or avgFC as threshold⩽ 0.95, and then
exhibits a significant rise when the threshold reaches
0.99. (3) The average accuracy of GCN with indi-
vidual and avgFC graphs show a gradual increase and
attain an optimal average accuracy at threshold= 0.95
and threshold= 0.90, respectively. Nonetheless, the
accuracy of both decrease when threshold= 0.99. (4)
Sometimes, the GNN with global FC achieves super-
ior performance compared with GNN using indi-
vidual FC. Overall, the proposed GCNwith threshold
graphs achieves the best average accuracy of 80.0%
(max 88.2%, min 74.0%) with FC-of-avgROI graphs
when threshold= 0.99.

The brain networks of avgFC and FC-of-avgROI
with different threshold values are displayed in
figure 8. It can be observed that: (1) Increasing
threshold results in fewer edges in both networks.
However, FC-of-avgROI contains much more
edges than avgFC when threshold> 0.7. When few
edges remain in the graph, there are self-network
edges of SMN, DMN, FPC, and VIS in avgFC
(threshold= 0.9); while, there are both self-network
and between-network edges of SMN and VAN in
FC-of-avgROI (threshold= 0.99). (2) The GCN with
global FC that have very few edges in the graph
obtained a higher average accuracy, which emphas-
izes the observation in k-NN graphs that excess-
ive connectivity can negatively affect classification

performance. (3) The slight decrease in average GCN
accuracy with avgFC when there is only one edge left
(threshold= 0.99) shows that a minimum number of
edge information can cause a slight decrease in accur-
acy, although the ROI series contain a large amount of
information. Furthermore, with suitable connectiv-
ity, the GNN with global FC can perform better than
GNNwith individual FC. These findings highlight the
significance of suitable edge information for achiev-
ing performance, rather than the threshold itself.

3.2.3. Results of GCN with the top-porp-MST graph
To further investigate the impact of graph edges on
GCN classification, we conduct a contrasting exper-
iment of top-p or p-MST graphs while maintaining
the same percentage p of edges in the graph. For clear
comparison, we place the results of the two in the
same figure 9. It can be observed that:

(1) Among the GCN classifier results with top-p
graphs, GCNs with avgFC or individual FC achieve
reasonable average accuracy as p⩽ 1.2% and exhibit
extremely strong robustness as p increases; GCNs
with FC-of-avgROI achieve reasonable average accur-
acy as p⩽ 0.8%, slightly higher as p⩽ 0.4% and sig-
nificantly lower as p⩾ 1.0%. However, when p⩽
0.1%, the average accuracy of all GCNs with indi-
vidual FC, avgFC or FC-of-avgROI slightly decrease.
Furthermore, it can be observed that all the GCN
models with the three types of graphs show higher
stability within the 0.2%⩽ p⩽ 0.8% range, as evid-
enced by the shorter difference between maximum
and minimum values.

Optimal average accuracy of GCN with the three
types of top-p graphs are: 79.8% at p= 0.3% (FC-
of-avgROI); 79.2% at p= 1.0% (avgFC), 80.3% at
p= 0.2% (individual FC). Particularly, the proposed
GCN achieves the best accuracy 91.2% at p= 2.2%
(individual FC).

9
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Figure 7.MCI vs. NC results of the proposed GCN framework with threshold graph.

Figure 8. The brain networks of threshold avgFC or FC-of-avgROI. The size of nodes reflects the degree of the graph, and the
nodes in k-NN graph have the same size. Other annotations are identical to figure 6.

(2) Among the GCN classifier results with p-
MST graphs, GCN with individual FC or avgFC
achieves higher average accuracy and better robust-
ness compared to GCN with FC-of-avgROI. Both
the average accuracy of GNN with avgFC and FC-
of-avgROI decrease as p increase, but the later
exhibits a more significant decline. Optimal aver-
age accuracy of GCN with the three types of p-
MST graphs are: 76.9% at p= 2.0% (FC-of-avgROI);
78.9% at p= 2.0% (avgFC); 79.7% at p= 2.4%
(individual FC).

(3) By comparing, it is evident that utilizing
fully-connected MST graphs in GCN yields better
performance than top-p graphs with an equivalent
edge percentage, as evidenced by the higher average

accuracy and shorter difference between maximum
and minimum values. Moreover, the performance
of GCN with individual FC or avgFC shows greater
robustness as p increases compared to FC-of-avgFC.
Additionally, the performance of GCN with indi-
vidual FC is superior than that of GCN with global
FC generally. Nevertheless, with appropriate edge
information, GCN with global FC can perform as
good as GCN with individual FC.

Figure 10 displays brain networks with top-p
avgFC or FC-of-avgROI within the 0.02%⩽ p⩽
1.8% range. For comparison, the brain networks
shown in figure 11 exhibit both top-p and p-MST
graphs of avgFC or FC-of-avgROI within 2.0%⩽ p⩽
2.8%.
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Figure 9.MCI vs. NC results of the proposed GCN framework with top-p or p-MST graph. Given that the p-MST graph is fully
connected, the minimum percentage (p) of the MST graph is 2.0%. When the graph consists of only one edge, the minimum
percentage of the top-p graph is 0.02%. The edge numbers corresponding to the percentages on the horizontal axis are as follows:
1 (p= 0.02%), 5 (p= 0.1%), 10 (p= 0.2%), 15 (p= 0.3%), 20 (p= 0.4%), 30 (p= 0.6%), 40 (p= 0.8%), 50 (p= 1.0%), 59
(p= 1.2%), 69 (p= 1.4%), 79 (p= 1.6%), 89 (p= 1.8%), 99 (p= 2.0%), 109 (p= 2.2%), 119 (p= 2.4%), 129 (p= 2.6%),
and 139 (p= 2.8%).

Figure 10. The brain networks of top-p avgFC or FC-of-avgROI at 0.02% ⩽ p ⩽ 1.8%. The annotations are identical to figure 8.

(1) From figure 10, it can be found that, as p
increases, the top-p avgFC graphs have more self-
network connectivity in VIS and SMN, while the top-
p FC-of-avgROI graphs have more between-network
connectivity in VAN and SMN. Furthermore, the
top-p avgFC graphs display more types of grouped
brain networks (ROIs) and more self-network edges
than top-p FC-of-avgROI as p⩾ 0.1%. The top-p
avgFC with more types of brain networks (ROIs) and
self-network connectivity (especially in VIS) contains
more valuable information for GCN classification,
while the top-p FC-of-avgROI with more between-
network connectivity may contains useless inform-
ation. These could explain why the performance of
GCN with avgFC is enhanced as compared to GCN
with FC-of-avgROI at higher values of p> 0.6%.
Specially, the average accuracy of GCN with FC-of-
avgROI are marginally higher than that of GCN with

avgFC when p⩽ 0.4%. This demonstrates that self-
network connectivity of VAN and SMN may play a
more significant role in GCN classification.

(2) Compared with top-p graphs, MST graphs are
fully connected and contain more graph information
as shown in figure 11. This may explain that the aver-
age accuracy of GCN with MST graph are consist-
ently higher than that of GCN with corresponding
top-p graph. Notably, a comparison between p-MST
avgFC and p-MST FC-of-avgROI graphs reveals that
the former has more self-network connectivity (espe-
cially in VIS) and fewer between-network connectiv-
ity, despite both containing all the ROIs. Besides,
GCNs with p-MST avgFC achieve superior perform-
ance than GCNs with p-MST FC-of-avgROI, further
supporting the previous inference that self-network
connectivity makes a more positive contribution to
GCN classification.
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Figure 11. The brain networks of top-p and p-MST graphs of avgFC or FC-of-avgROI within 2.0% ⩽ p ⩽ 2.8%. The annotations
are identical to figure 8.

3.3. RD vs.NC classification results

To analysis the rfMRI data of dementia patient prior
to clinical diagnosis, we perform the GCN classific-
ation of RD vs. NC for earlier prediction of demen-
tia risk. Given our extensive analysis on MCI vs. NC
classification, here we only conduct the RD vs. NC
classification with k-NN graph when k= 1 and top-p
graph when p= 1.0%. Figure 12 depicts the results of
the RD vs. NC classification. It can be observed that
GNN with k-NN (k= 1) of the three type of graphs
achieved better performance in the RD vs. NC clas-
sification, and obtained the best average accuracy of
78.8% with FC-of-avgROI graph when k= 1. This
prove that GCN using global graphs with appropriate
connectivity can achieve equivalent or superior per-
formance to individual graphs. Besides, RD vs. NC
classification exhibits decreased stability compared to
MCI vs. NC classification, as indicated by a larger
variance between the maximum and minimum val-
ues. This can potentially be attributed to a smaller
amount of available training and test data for the RD
vs. NC classification task.

From the brain networks for RD vs. NC classific-
ation in figure 13, it can be observed that there are
more self-network connectivity of VIS in the FC-of-
avgROI for RD vs.NC than that forMCI vs. NC,while
there is little difference in the avgFC between the
two kinks of classification. This implies that demen-
tia may alter the brain networks in VIS. Besides, the
avgFC exhibits more self-network connectivity in VIS
and DMN compared to FC-of-avgROI in the top-p

Figure 12. RD vs. NC classification results of the proposed
GCN framework with k-NN (k= 1) and top-p (p= 1.0%)
graph.

(p= 1.0%) graphs. And the accuracy of GCN with
top-p (p= 1.0%) avgFC are higher than that of GCN
with top = p (p= 1.0%) FC-of-avgROI, suggesting
that self-network connectivity in VIS and DMN pos-
itively contributes to GCN classification. This could
explain why the accuracy of k-NN (k= 1) FC-of-
avgFC is slightly higher than that of k-NN (k= 1)
avgFC, as the former has similar or higher amount of
self-network connectivity in VIS.
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Figure 13. The brain networks of k-NN (k= 1) and top-p (p= 1.0%) for RD vs. NC classification. The annotations are identical
to figure 8.

4. Discussion

In this study, we developed an FC based GCN frame-
work for fMRI binary classifications and evaluated
the performance on the longitudinalOASIS-3 dataset.
We conducted two kinds of classification:MCI vs. NC
(detecting MCI from NCs) and RD vs. NC (predict-
ing dementia risk prior to clinical diagnosis of MCI).
Besides, we explored the impact of different types and
processing methods of FC on the GCN classification
performance.

The results of our experiments revealed sev-
eral important findings. First, our proposed GCN
outperformed both the baseline GCN and SVM in
terms of accuracy, indicating its effectiveness for MCI
diagnosis and dementia risk prediction. The pro-
posed GCN achieved the best average accuracy of
80.3% (11.7% higher than the baseline GCN and
23.5% higher than SVM) and the highest accuracy
of 91.2%. This highlights the potential of deep learn-
ing techniques, specifically the GCN framework, for
analyzing rfMRI data and detecting neurodegenerat-
ive disorders.

Second, we compared the effects of different
types of FC utilized in the GCN, revealing that the
topology of the brain network definitely affect the
GCN classification performance. The comparison
between absolute and non-absolute individual FC
revealed that the proposed GCN with absolute indi-
vidual FC performed slightly better. We compared
the use of global FC matrices (avgFC and FC-of-
avgROI) obtained from the training data with indi-
vidual FC matrices from each rfMRI data. Nowadays,
many studies believe that GCNs with individual con-
nectivity matrices perform better than global con-
nectivity matrices [23]. In this study, we found that
the GCN framework with individual FC performed
slightly better than that with global FC generally.

This suggests that individual-specific FC may con-
tain valuable information for classification tasks, and
incorporating them into theGCNmodel can improve
its performance. However, GCN using global graphs
with appropriate connectivity including self-network
connectivity in VIS, DMN, VAN, and SMN—linked
to disease symptoms or impairment—can achieve
equivalent or superior performance to individual
graphs in some cases. Beside, GCNs with avgFC or
individual FC exhibit greater robustness compared
with FC-of-avgROI as the number of edges in the
graph increases.

Furthermore, we investigated different processing
methods for FCmatrices, including the k-NN graphs,
threshold graphs, top-p graph and p-MST graphs.
The results suggest that the choice of FC type and
graph construction method can influence GCN clas-
sification performance. The GCN with k-NN graphs
achieved the best average accuracy when k is set to
1, indicating that considering only the nearest neigh-
bors in the graph can be beneficial for classifica-
tion. The GCN with threshold graphs exhibited dif-
ferent patterns, with the accuracy varying with differ-
ent threshold values. The results suggests that either
excessive or extremely scarce connectivity can neg-
atively affect the GCN classification performance.
Besides, we investigated the use of top-p and p-MST
graphs and found that utilizing fully-connected MST
graphs in GCN yields better performance than top-p
graphs with an equivalent edge percentage.

Lastly, we analyzed the functional brain networks
utilized in the GCN framework for MCI or RD pre-
diction, an aspect that has been scarcely explored in
existing studies. We observed that between-network
connectivity in the networks could negatively impact
the GCN classification performance. This discovery
aligns with the current research status that few studies
have demonstrated significant associations between
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disturbed self-network connectivity and cognitive
impairments in MCI or AD [57]. Additionally, we
found that graphs with a greater number of nodes
with minimum self-network connectivity may con-
tain more valuable information for the GCN classi-
fication. Besides, the comparison between MCI vs.
NC and RD vs. NC implies that dementia may alter
the brain networks in VIS and DMN at very early
stage. The results indicates that the self-network con-
nectivity in DMN, VIS, VAN and SMN may play a
more significant role in GCN classification, suggest-
ing that there might be topological impairments in
these functional brain networks amongMCI patients.
These functional brain networks may have close con-
nections to the symptoms of dementia such as dimin-
ished memory, disruptions in executive function,
deficits in attention, visuospatial orientation, neuro-
psychiatric symptoms, etc. For instance, DMN is cru-
cial for memory performance [52]; the visual cor-
tex has been reported dysfunctional in AD [53]; VAN
are considered to be responsible for the endogen-
ous attention orienting process [54]; and SMN plays
a pivotal role in episodic memory, action recogni-
tion and spatial navigation [55]. These findings are
in line with the findings in [56] that disturbed FC
of rest state was seen in the DMN and VIS in AD
patients. Specially, the decreased self-network con-
nectivity in DMN is often observed in rfMRI from
the MCI and AD groups [57]. Li et al [53] found that
both MCI and AD patients showed hyperactivation
fell in FPC, VAN, DMN and SMN relative to NCs.
Esposito et al [58] observed that rfMRI of MCI sub-
jects showed increased intrinsic connectivity in the
DMN and SMN. Zhang et al [59] revealed significant
group-differed FC in VAN.

Our work has several limitations that warrant
further investigation. Firstly, there is potential for
improving the accuracy and computational effi-
ciency of the proposed GCN. This could involve
exploring alternative architectures, dynamic learn-
ing rate scheduling, and alternative activation func-
tions, among other hyperparameter adjustments.
Secondly, we only applied the GCN model to the
fMRI data from the OASIS-3 dataset. In future work,
we plan to generalize the model to different datasets
and incorporate other multi-modality data, such as
sMRI data, diffusion MRI data, and genetic inform-
ation. Furthermore, the proposed GCN framework
currently focuses on binary classification. However,
dementia exists in different stages and severity levels.
Therefore, it would be valuable to investigate the
development of a multi-class classifier to capture the
various levels of dementia. In this study, we utilized
the Schaefer atlas to extract ROI-level connectivity.
However, previous research has shown that the choice
of brain atlas can impact the differentiation of vari-
ous stages of dementia [60]. Therefore, it is import-
ant to explore the classification performance of our

model using other functional atlases and investigate
the effects of self-network connectivity and between-
network connectivity. Finally, even if we used a data-
set of 1006 samples for NC vs. MCI classification and
282 samples for NC vs. RD classification, the pro-
posed method might be limited by these numbers, as
deep learning models rely on the use of a large num-
ber of samples to properly train and fit the huge set
of parameters. Therefore, other databases with more
samples should be investigated to corroborate our
findings.

5. Conclusions

In this study, we developed an FC based GCN frame-
work for fMRI binary classifications and conduc-
ted two kinds of classification on the longitudinal
OASIS-3 dataset: MCI vs. NC (detecting MCI from
NCs) and RD vs. NC (predicting dementia risk prior
to clinical diagnosis of MCI). Besides, we explored
how different types (individual FC, avgFC, FC-of-
avgROI) and processing methods (k-NN, threshold,
top-p and p-MST) of FC affect the GCN classi-
fication performance. The proposed GCN frame-
work shows superior effectiveness compared with
the baseline GCN and SVM. This work provides
insights into the application of GCNs in brain ana-
lysis and early MCI detection, contributing to the
understanding of MCI. The study holds signific-
ant potential for real-world applications, particu-
larly in improving early clinical diagnosis and inter-
vention for dementia and other neurodegenerative
diseases.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: www.
oasis-brains.org/.

Acknowledgments

This work was carried out as part of the doctoral pro-
gramme in Experimental Sciences and Technology
at the University of Vic—Central University of
Catalonia. F D work was supported in part by the
Tianjin Science and Technology Plan Project (No.
22PTZWHZ00040). C F C work was partially sup-
ported by Grants PICT 2020-SERIEA-00457 and PIP
112202101 00284CO (Argentina).

ORCID iDs

Zhe Sun https://orcid.org/0000-0002-6531-0769
Cesar F Caiafa https://orcid.org/0000-0001-5437-
6095
Jordi Solé-Casals https://orcid.org/0000-0002-
6534-1979

14

https://www.oasis-brains.org/
https://www.oasis-brains.org/
https://orcid.org/0000-0002-6531-0769
https://orcid.org/0000-0002-6531-0769
https://orcid.org/0000-0001-5437-6095
https://orcid.org/0000-0001-5437-6095
https://orcid.org/0000-0001-5437-6095
https://orcid.org/0000-0002-6534-1979
https://orcid.org/0000-0002-6534-1979
https://orcid.org/0000-0002-6534-1979


J. Neural Eng. 21 (2024) 016013 S Han et al

References

[1] Breijyeh Z and Karaman R 2020 Comprehensive review on
Alzheimer’s disease: causes and treatmentMolecules 25 5789

[2] Srivastava S, Ahmad R and Kumar Khare S 2021 Alzheimer’s
disease and its treatment by different approaches: a review
Eur. J. Med. Chem. 216 113320

[3] López O L and DEKOSKY S T 2008 Clinical symptoms in
Alzheimer’s disease Handb Clin Neurol 89 207–16

[4] Wee C-Y, Liu C, Lee A, Poh J S, Ji H and Qiu A (The
Alzheimer’s Disease Neuroimage Initiative) 2019 Cortical
graph neural network for AD and MCI diagnosis and
transfer learning across populations NeuroImage Clin.
23 101929

[5] Karakaya T, Fußer F, Schroder J and Pantel J 2013
Pharmacological treatment of mild cognitive impairment as
a prodromal syndrome of Alzheimer’s disease Curr.
Neuropharmacol. 11 102–8(7)

[6] Robinson L, Tang E and Taylor J-P 2015 Dementia: timely
diagnosis and early intervention BMJ 350 h3029

[7] Chandra A, Dervenoulas G and Politis M 2019 Magnetic
resonance imaging in Alzheimer’s disease and mild cognitive
impairment J. Neurol. 266 1293–302

[8] Liu S, Cai W, Liu S, Zhang F, FulhamM, Feng D, Pujol S and
Kikinis R 2015 Multimodal neuroimaging computing: a
review of the applications in neuropsychiatric disorders
Brain Inf. 2 167–80

[9] Bi X, Zhao X, Huang H, Chen D and Ma Y 2020 Functional
brain network classification for Alzheimer’s disease detection
with deep features and extreme learning machine Cogn.
Comput. 12 513–27

[10] Greicius M D, Krasnow B, Reiss A L and Menon V 2003
Functional connectivity in the resting brain: a network
analysis of the default mode hypothesis Proc. Natl Acad. Sci.
100 253–8

[11] Bullmore E and Sporns O 2009 Complex brain networks:
graph theoretical analysis of structural and functional
systems Nat. Rev. Neurosci. 10 186–98

[12] Illakiya T and Karthik R 2023 Automatic detection of
Alzheimer’s disease using deep learning models and
neuro-imaging: current trends and future perspectives
Neuroinformatics 21 339–64

[13] Warren S L and Moustafa A A 2023 Functional magnetic
resonance imaging, deep learning and Alzheimer’s disease: a
systematic review J. Neuroimaging 33 5–18

[14] Zhang Y et al 2023 Machine learning-based identification of
a psychotherapy-predictive electroencephalographic
signature in PTSD Nat. Mental Health 1 284–94

[15] Borchert R J et al 2023 Artificial intelligence for diagnostic
and prognostic neuroimaging in dementia: a systematic
review Alzheimer’s Dementia 19 5885–904

[16] Devika K and Ramana Murthy Oruganti V 2021 A machine
learning approach for diagnosing neurological disorders
using longitudinal resting-state fMRI 2021 11th Int. Conf. on
Cloud Computing, Data Science & Engineering (Confluence)
(IEEE) pp 494–9

[17] Helaly H A, Badawy M and Haikal A Y 2022 Deep learning
approach for early detection of Alzheimer’s disease Cogn.
Comput. 14 1711–27

[18] Ebrahimi-Ghahnavieh A, Luo S and Chiong R 2019 Transfer
learning for Alzheimer’s disease detection on MRI images
2019 IEEE Int. Conf. on Industry 4.0, Artificial Intelligence and
Communications Technology (IAICT) (IEEE) pp 133–8

[19] Zhao K, Duka B, Xie H, Oathes D J, Calhoun V and Zhang Y
2022 A dynamic graph convolutional neural network
framework reveals new insights into connectome
dysfunctions in ADHD NeuroImage 246 118774

[20] Niepert M, Ahmed M and Kutzkov K 2016 Learning
convolutional neural networks for graphs Int. Conf. on
Machine Learning (PMLR) pp 2014–23

[21] Scarselli F, Gori M, Chung Tsoi A, Hagenbuchner M and
Monfardini G 2008 The graph neural network model IEEE
Trans. Neural Netw. 20 61–80

[22] Wein S 2023 Applications of spatio-temporal graph neural
network models for brain connectivity analysis PhD Thesis
University of Regensburg

[23] Parisot S, Ira Ktena S, Ferrante E, Lee M, Guerrerro
Moreno R, Glocker B and Rueckert D 2017 Spectral graph
convolutions for population-based disease prediction Int.
Conf. on Medical Image Computing and Computer-Assisted
Intervention (Springer) pp 177–85

[24] Ira Ktena S, Parisot S, Ferrante E, Rajchl M, Lee M,
Glocker B and Rueckert D 2018 Metric learning with spectral
graph convolutions on brain connectivity networks
NeuroImage 169 431–42

[25] Wang L, Li K and Hu X P 2021 Graph convolutional network
for fMRI analysis based on connectivity neighborhood Netw.
Neurosci. 5 83–95

[26] Tang H, Ma G, Guo L, Fu X, Huang H and Zhan L 2022
Contrastive brain network learning via hierarchical signed
graph pooling model IEEE Trans. Neural Netw. Learn. Syst.
1–13

[27] Lei B et al 2023 Multi-scale enhanced graph convolutional
network for mild cognitive impairment detection Pattern
Recognit. 134 109106

[28] LaMontagne P J et al 2019 OASIS-3: longitudinal
neuroimaging, clinical, and cognitive dataset for normal
aging and Alzheimer’s diseasemedRxiv Preprint https://doi.
org/10.1101/2019.12.13.19014902 (posted online 15
December 2019, accessed 15 February 2022)

[29] Esteban O et al 2019 fMRIPrep: a robust preprocessing
pipeline for functional MRI Nat. Methods 16 111–6

[30] Avants B B, Epstein C L, Grossman M and Gee J C 2008
Symmetric diffeomorphic image registration with
cross-correlation: evaluating automated labeling of
elderly and neurodegenerative brainMed. Image Anal.
12 26–41

[31] Zhang Y, Brady J M and Smith S 2000 Hidden Markov
random field model for segmentation of brain MR image
Proc. SPIE 3979 1126–37

[32] Greve D N and Fischl B 2009 Accurate and robust brain
image alignment using boundary-based registration
NeuroImage 48 63–72

[33] Pruim R H R, Mennes M, van Rooij D, Llera A, Buitelaar J K
and Beckmann C F 2015 ICA-AROMA: a robust ICA-based
strategy for removing motion artifacts from fMRI data
NeuroImage 112 267–77

[34] Schaefer A, Kong R, Gordon E M, Laumann T O, Zuo Xi-N,
Holmes A J, Eickhoff S B and Thomas Yeo B T 2018
Local-global parcellation of the human cerebral cortex from
intrinsic functional connectivity MRI Cereb. Cortex
28 3095–114

[35] Cao M, Yang M, Qin C, Zhu X, Chen Y, Wang J and Liu T
2021 Using DeepGCN to identify the autism spectrum
disorder from multi-site resting-state data Biomed. Signal
Process. Control 70 103015

[36] Sólon Heinsfeld A, Franco A R, Craddock R C, Buchweitz A
and Meneguzzi F 2018 Identification of autism spectrum
disorder using deep learning and the ABIDE dataset
NeuroImage Clin. 17 16–23

[37] Stam C J, Tewarie P, Van Dellen E, Van Straaten E C W,
Hillebrand A and Van Mieghem P 2014 The trees and the
forest: characterization of complex brain networks with
minimum spanning trees Int. J. Psychophysiol. 92 129–38

[38] Alexander-Bloch A F, Gogtay N, Meunier D, Birn R,
Clasen Liv, Lalonde F, Lenroot R, Giedd J and Bullmore E T
2010 Disrupted modularity and local connectivity of brain
functional networks in childhood-onset schizophrenia Front.
Syst. Neurosci. 4 147

[39] Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C
and Sun M 2020 Graph neural networks: a review of
methods and applications AI Open 1 57–81

[40] Hanik M, Arif Demirtaş M, Amine Gharsallaoui M and
Rekik I 2022 Predicting cognitive scores with graph neural
networks through sample selection learning Brain Imaging
Behav. 16 1123–38

15

https://doi.org/10.3390/molecules25245789
https://doi.org/10.3390/molecules25245789
https://doi.org/10.1016/j.ejmech.2021.113320
https://doi.org/10.1016/j.ejmech.2021.113320
https://doi.org/10.1016/S0072-9752(07)01219-5
https://doi.org/10.1016/S0072-9752(07)01219-5
https://doi.org/10.1016/j.nicl.2019.101929
https://doi.org/10.1016/j.nicl.2019.101929
https://doi.org/10.2174/157015913804999487
https://doi.org/10.2174/157015913804999487
https://doi.org/10.1136/bmj.h3029
https://doi.org/10.1136/bmj.h3029
https://doi.org/10.1007/s00415-018-9016-3
https://doi.org/10.1007/s00415-018-9016-3
https://doi.org/10.1007/s40708-015-0019-x
https://doi.org/10.1007/s40708-015-0019-x
https://doi.org/10.1007/s12559-019-09688-2
https://doi.org/10.1007/s12559-019-09688-2
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1007/s12021-023-09625-7
https://doi.org/10.1007/s12021-023-09625-7
https://doi.org/10.1111/jon.13063
https://doi.org/10.1111/jon.13063
https://doi.org/10.1038/s44220-023-00049-5
https://doi.org/10.1038/s44220-023-00049-5
https://doi.org/10.1002/alz.13412
https://doi.org/10.1002/alz.13412
https://doi.org/10.1007/s12559-021-09946-2
https://doi.org/10.1007/s12559-021-09946-2
https://doi.org/10.1016/j.neuroimage.2021.118774
https://doi.org/10.1016/j.neuroimage.2021.118774
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1016/j.neuroimage.2017.12.052
https://doi.org/10.1016/j.neuroimage.2017.12.052
https://doi.org/10.1162/netn_a_00171
https://doi.org/10.1162/netn_a_00171
https://doi.org/10.1109/TNNLS.2022.3220220
https://doi.org/10.1016/j.patcog.2022.109106
https://doi.org/10.1016/j.patcog.2022.109106
https://doi.org/10.1101/2019.12.13.19014902
https://doi.org/10.1101/2019.12.13.19014902
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1117/12.387617
https://doi.org/10.1117/12.387617
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.bspc.2021.103015
https://doi.org/10.1016/j.bspc.2021.103015
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1016/j.ijpsycho.2014.04.001
https://doi.org/10.1016/j.ijpsycho.2014.04.001
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1007/s11682-021-00585-7
https://doi.org/10.1007/s11682-021-00585-7


J. Neural Eng. 21 (2024) 016013 S Han et al

[41] Sporns O, Tononi G and Kötter R 2005 The human
connectome: a structural description of the human brain
PLoS Comput. Biol. 1 e42

[42] Suprano I 2019 Cerebral connectivity study by functional
and diffusion MRI in intelligence PhD Thesis Université de
Lyon

[43] Micheli A 2009 Neural network for graphs: a contextual
constructive approach IEEE Trans. Neural Netw. 20 498–511

[44] Errica F, Podda M, Bacciu D and Micheli A 2020 A fair
comparison of graph neural networks for graph classification
Int. Conf. on Learning Representations (ICLR 2020)

[45] Fey M and Eric Lenssen J 2019 Fast graph representation
learning with PyTorch geometric ICLR Workshop on
Representation Learning on Graphs and Manifolds

[46] Morris C, Ritzert M, Fey M, Hamilton W L, Eric Lenssen J,
Rattan G and Grohe M 2019 Weisfeiler and Leman go
neural: higher-order graph neural networks Proc. AAAI Conf.
on Artificial Intelligence vol 33 pp 4602–9

[47] Nair V and Hinton G E 2010 Rectified linear units improve
restricted Boltzmann machines Proc. 27th Int. Conf. on
Machine Learning (ICML-10)

[48] Kingma D P and Ba J L 2015 Adam: a method for stochastic
optimization Int. Conf. on Learning Representations pp 1–13

[49] Burges C J C 1998 A tutorial on support vector machines for
pattern recognition Data Min. Knowledge Discovery 2 121–67

[50] Xia M, Wang J and He Y 2013 Brainnet viewer: a network
visualization tool for human brain connectomics PLoS One
8 e68910

[51] Buckner R L, Krienen F M, Castellanos A, Diaz J C and
Thomas Yeo B T 2011 The organization of the human
cerebellum estimated by intrinsic functional connectivity J.
Neurophysiol. 106 2322–45

[52] He J, Carmichael O, Fletcher E, Singh B, Iosif A-M,
Martinez O, Reed B, Yonelinas A and DeCarli C 2012

Influence of functional connectivity and structural MRI
measures on episodic memory Neurobiol. Aging
33 2612–20

[53] Li H-J, Hou X-H, Liu H-H, Yue C-L, He Y and Zuo Xi-N
2015 Toward systems neuroscience in mild cognitive
impairment and Alzheimer’s disease: a meta-analysis of 75
fMRI studies Hum. Brain Mapp. 36 1217–32

[54] Corbetta M and Shulman G L 2002 Control of goal-directed
and stimulus-driven attention in the brain Nat. Rev.
Neurosci. 3 201–15

[55] Russ M O, Mack W, Grama C-R, Lanfermann H and
Knopf M 2003 Enactment effect in memory: evidence
concerning the function of the supramarginal gyrus Exp.
Brain Res. 149 497–504

[56] Zheng W, Liu X, Song H, Li K and Wang Z 2017 Altered
functional connectivity of cognitive-related cerebellar
subregions in Alzheimer’s disease Front. Aging Neurosci.
9 143

[57] Zhu H et al 2016 Changes of intranetwork and internetwork
functional connectivity in Alzheimer’s disease and mild
cognitive impairment J. Neural Eng. 13 046008

[58] Esposito R, Mosca A, Pieramico V, Cieri F, Cera N and
Sensi S L 2013 Characterization of resting state activity in
MCI individuals PeerJ 1 e135

[59] Zhang Z , Zheng H, Liang K, Wang H, Kong S, Hu J, Wu F
and Sun G 2015 Functional degeneration in dorsal and
ventral attention systems in amnestic mild cognitive
impairment and Alzheimer’s disease: an fMRI study
Neurosci. Lett. 585 160–5

[60] Wu Z, Dong X and Potter T 2019 Yingchun Zhang and
Alzheimer’s disease neuroimaging initiative. Effects of brain
parcellation on the characterization of topological
deterioration in Alzheimer’s disease Front. Aging Neurosci.
11 113

16

https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1152/jn.00339.2011
https://doi.org/10.1152/jn.00339.2011
https://doi.org/10.1016/j.neurobiolaging.2011.12.029
https://doi.org/10.1016/j.neurobiolaging.2011.12.029
https://doi.org/10.1002/hbm.22689
https://doi.org/10.1002/hbm.22689
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1007/s00221-003-1398-4
https://doi.org/10.1007/s00221-003-1398-4
https://doi.org/10.3389/fnagi.2017.00143
https://doi.org/10.3389/fnagi.2017.00143
https://doi.org/10.1088/1741-2560/13/4/046008
https://doi.org/10.1088/1741-2560/13/4/046008
https://doi.org/10.7717/peerj.135
https://doi.org/10.7717/peerj.135
https://doi.org/10.1016/j.neulet.2014.11.050
https://doi.org/10.1016/j.neulet.2014.11.050
https://doi.org/10.3389/fnagi.2019.00113
https://doi.org/10.3389/fnagi.2019.00113

	Early prediction of dementia using fMRI data with a graph convolutional network approach
	1. Introduction
	2. Materials and methods
	2.1. Data
	2.1.1. OASIS-3 dataset
	2.1.2. MRI sessions labeling

	2.2. Methods
	2.2.1. fMRI acquisition and preprocessing
	2.2.2. FC construction
	2.2.3. Graph neural network (GNN)


	3. Results
	3.1. Configurations
	3.2. MCI vs. NC classification results
	3.2.1. Results of GCN with k-NN graph
	3.2.2. Results of GCN with threshold graph
	3.2.3. Results of GCN with the top-porp-MST graph

	3.3. RD vs. NC classification results

	4. Discussion
	5. Conclusions
	References


