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A B S T R A C T

This manuscript presents a novel approach for decoding pre-movement patterns from brain signals using a two-
stage-training temporal–spectral neural network (TTSNet). The TTSNet employs a combination of filter bank
task-related component analysis (FBTRCA) and convolutional neural network (CNN) techniques to enhance the
classification of single-upper limb movements in non-invasive brain–computer interfaces (BCIs).

In our previous work, we introduced the FBTRCA method which utilized filter banks and spatial filters
to handle spectral and spatial information, respectively. However, we observed limitations in the temporal
decoding phase, where correlation features failed to effectively utilize temporal information because of
misaligned onset and noisy spikes. To address this issue, our proposed method focuses on analyzing multi-
channel signals in the temporal–spectral domain. The TTSNet first divides the signals into various filter
banks, employing task-related component analysis to reduce dimensionality and eliminate noise, respectively.
Subsequently, a CNN is employed to optimize the temporal characteristics of the signals and extract class-
related features. Finally, the class-related features from all filter banks are concatenated and classified using
the fully connected layer.

To evaluate the effectiveness of our proposed method, we conducted experiments on two publicly available
datasets. In binary classification tasks, the TTSNet achieved an improved accuracy of 0.7707 ± 0.1168,
surpassing the performance of EEGNet (accuracy: 0.7340 ± 0.1246) and FBTRCA (accuracy: 0.7487 ± 0.1250).
In multi-class tasks, TTSNet achieved an accuracy of 0.4588 ± 0.0724, exhibiting a 4.27% and 3.95% accuracy
increase over EEGNet and FBTRCA, respectively.

The findings of this study suggest that the proposed TTSNet method holds promise for detecting limb
movements and assisting in the rehabilitation of stroke patients. The classification of single-side limb
movements is expected to facilitate the interaction between patients and external environment by increasing
the number of control commands in BCIs.
1. Introduction

Non-invasive brain–computer interfaces (BCIs) serve as a link be-
tween the human brain and external devices, such as computers and
robots (Hramov et al., 2021; Saha et al., 2021; Kawala-Sterniuk et al.,
2021). They enable the conversion of brain activity into control com-
mands by analyzing electroencephalogram (EEG) data. The EEG signals
are non-invasively acquired from the scalp using specialized acquisition
devices.
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Movement-related cortical potential (MRCP) is a brain activity as-
sociated with single-side upper limb movement (Olsen et al., 2018;
Ofner et al., 2017, 2019; Farina et al., 2013; Ghani et al., 2023). When
a subject’s limb moves, EEG signals acquired from the motor cortex
show an increase in amplitude in the low-frequency domain Ofner et al.
(2017, 2019). Due to noise influences during signal acquisition, the EEG
signals are averaged across multiple trials of repeated motions to reduce
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the noise impact. The averaged signal across multiple trials belonging
to same motion, known as the grand average MRCP, is used to reduce
the impact of noise during signal acquisition (Borràs et al., 2022).
Distinct differences in the grand average MRCPs are observed before
and after movement onset when different upper limb motions, such as
hand closure and elbow flexion, are executed (Ofner et al., 2017). These
differences in grand average MRCPs serve as discriminative features for
classifying the upper limb movements of subjects.

Previous studies on MRCP signals have focused on two tasks: move-
ment detection and movement classification (Kaeseler et al., 2022).
Movement detection aims to distinguish between movement and resting
states, representing a binary classification task. In contrast, move-
ment classification involves distinguishing between binary or multi-
class movement states. During movement states, the grand average
MRCP exhibits fluctuations characterized by an initial increase followed
by a subsequent decrease around the movement onset. In contrast, the
grand average MRCP during the resting state remains relatively stable
in comparison to the movement state (Ofner et al., 2017). It is worth
noting that movement detection, which classifies signals as fluctuating
or steady, generally achieves higher classification accuracy compared
to movement classification, as it represents a subset of the broader
movement classification task.

The movement detection problem is tackled using the subject-
dependent and section-wise spectral filtering method, which considers
MRCP signals in two different temporal sections (Jeong et al., 2020).
These sections comprise a two-second time window before the move-
ment onset and a one-second time window after the movement onset.
The signals within each section are averaged, and the mean amplitudes
in both sections are used as features, which are subsequently fed
into a regularized linear discriminant analysis classifier. This method
utilizes the changes in amplitude of MRCP signals before and after the
movement onset. However, the signal averaging approach overlooks
the temporal dynamics of amplitude changes, potentially leading to
information loss during signal processing.

EEG source imaging is another valuable contribution to the classifi-
cation of single-side limb movement (Edelman et al., 2016). Instead of
directly analyzing brain images, this technique initially identifies the
region of interest. Following this, the EEG signals within the identified
region of interest are analyzed in the time–frequency domain.

In our previous work, we proposed the standard task-related compo-
nent analysis method (STRCA) to address the movement detection prob-
lem (Duan et al., 2021). This method utilizes task-related component
analysis (TRCA) as a spatial filter to remove noise and task-unrelated
components from EEG signals. The spatial filtering process can be seen
as a method for identifying the regions of interest. This spatial filter
is also mentioned in the decoding of continuous finger movements to
process MRCP signals (Liu et al., 2023). After applying spatial filtering
to both the unlabeled signals and the grand average MRCPs, canon-
ical correlation coefficients are calculated to measure the similarity
between the unlabeled signals and multiple grand average MRCPs. The
extracted coefficients are then used as features for linear discriminant
analysis (LDA) classifier, which classifies the signals and predicts their
labels. To capture information about the amplitude changes in MRCP
signals, STRCA compares the unlabeled signals with the grand average
MRCPs and uses the calculated similarity as a feature.

Frequency domain analysis is a widely used approach for analyzing
time series data. To harness information across various frequencies,
we introduced the filter bank task-related component analysis method
(FBTRCA) (Jia et al., 2022). The EEG signals are divided into multiple
filter banks, with a consistent low cut-off frequency of 0.5 Hz. The high
cut-off frequencies are arranged in an arithmetic sequence ranging from
1 Hz to 10 Hz. STRCA is used to extract features from each filter bank,
and the resulting features are concatenated. For feature selection, we
use a method based on mutual information, i.e., minimum redundancy
2

maximum relevance (mRMR) to select the most informative features.
Finally, the selected features are classified using a support vector
machine (SVM) classifier.

In STRCA, the spatial filter is derived by concatenating the task-
related component analysis spatial filters of two classes. However,
as the number of classes increases, the number of vectors along the
concatenation axis exceeds the number of EEG channels. This limitation
restricts the use of STRCA and FBTRCA in multi-class tasks. To address
this limitation and enable the use of STRCA and FBTRCA in multi-
class classification, we optimized the structure of the spatial filter and
eliminated the common component from the grand average MRCPs.
The common component is obtained by averaging the grand average
MRCPs of multiple classes. This modification allows for the application
of FBTRCA in both movement detection and classification tasks (Jia
et al., 2023).

Analyzing EEG signals in the time domain provides valuable in-
sights. For instance, in motor imagery tasks, employing sliding time
windows enhances the classification performance between movements
of the left and right limbs. A deep learning method named EEGNet
has proven to be an effective tool for processing EEG signals (Lawhern
et al., 2018). EEGNet is capable of leveraging the temporal informa-
tion within EEG signals due to its shift-invariant properties in the
convolutional layers.

Our previously proposed method, FBTRCA, leverages information
from various filter banks. In FBTRCA, temporal information is evalu-
ated using a simple correlation measure between unlabeled EEG signals
and the grand average MRCPs. This correlation heavily relies on the
grand average MRCPs, which can be susceptible to noise. While noise
in the grand average MRCPs is reduced through signal averaging within
the same class, it is important to note that the grand average MRCPs
utilized in FBTRCA may still be affected by unknown noise sources
such as spikes. Furthermore, in scenarios where the precise localization
of movement onset is challenging, there may be latency differences
between the MRCP signals of two trials (Sburlea et al., 2015).

In this work, our objective is to enhance the temporal decoding of
FBTRCA and improve its performance. To achieve this, we introduce a
two-stage-training temporal–spectral neural network (TTSNet). TTSNet
incorporates the shift-invariant properties of convolutional layers and
integrates temporal information into the FBTRCA method. The TTSNet
model comprises four steps: (1) dividing EEG signals into filter banks,
(2) optimizing the EEG signals using the spatial filter, (3) extracting
temporal features using EEGNet, and (4) concatenating the extracted
features and performing classification using a fully connected layer.

The structure of this work is organized as follows. Section 2 in-
troduces the EEG datasets utilized in this study and describes the
preprocessing steps applied to these datasets. Additionally, it presents
the detailed structure of the proposed method. Section 3 evaluates
the classification performance of the proposed method on the EEG
dataset and compares it against other state-of-the-art methods. Sec-
tion 4 explains the design of the proposed method and how it utilizes
information from the grand average MRCP. Finally, Section 5 provides
the concluding remarks for this paper.

2. Material and methods

2.1. Dataset description

In this work, we evaluate the classification performance using two
public datasets pertaining to upper limb movement, namely Dataset
I and Dataset II. Dataset I comprises EEG data from 15 healthy sub-
jects (Ofner et al., 2017), while Dataset II contains EEG data from 10
subjects with cervical spinal cord injuries (Ofner et al., 2019). The
preprocessing of the raw EEG signals in this study follows the same
procedures as detailed in our previous works.

Each subject was seated in front of a computer with their arm sup-
ported by a table or exoskeleton to minimize muscle fatigue. The signal

acquisition paradigm employed in this study followed a trial-based
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Fig. 1. The overall framework of the multi-class FBTRCA method and the TTSNet method. In both methods, EEG signals are divided into filter banks and then optimized with the
spatial filter TRCA. During the decoding of temporal information from signals, FBTRCA uses the correlation between these signals and the grand average MRCPs as the features.
TTSNet uses the EEGNet to capture the temporal information and use the shift-invariant of the convolution layers. Following the decoding of temporal information, output features
from all filter banks are concatenated. In FBTRCA, these features are selected and optimized by the mRMR method and classified by the SVM method. In TTSNet, these features
are flattened and subsequently classified by the fully connected layer.
approach, with each trial lasting 5 s. At 0 s, the trial commenced with
an auditory beep, accompanied by a cross displayed on the computer
screen. Two seconds later, a cue was presented on the screen, indicating
the required movement to be executed by the subject.

Dataset I consists of movements including elbow flexion, elbow exten-
sion, supination, pronation, hand close, hand open, and resting. In dataset
II, the executed movements include supination, pronation, hand open,
palmar grasp, and lateral grasp. Dataset I comprises 60 trials per class,
whereas dataset II consists of 72 trials per class.

In dataset I, the movement trajectories of the hand were simulta-
neously recorded by the exoskeleton during the EEG signal acquisition,
allowing for the accurate localization of the movement onset. However,
in dataset II, the movement trajectories were not recorded, and thus,
the movement onset for each trial is unknown. Additionally, the latency
lag between the movement onset and the cue cannot be eliminated
in dataset II. To investigate the influence of movement onset on the
classification performance, we divide the experiments conducted on
dataset I into two cases: dataset I(a) and dataset I(b). In dataset I(a),
the recorded movement trajectories are used to locate the movement
onset. The EEG signals recorded from one second before the movement
onset to one second after the movement onset are used in the evaluation
and classification tasks. In dataset I(b), the assumption is made that
the movement trajectories were not recorded, making it impossible to
reject contaminated trials or accurately locate the movement onset.
Consequently, the EEG signals used in the classification task extend
from the cue to two seconds after the cue. Similarly, in dataset II, the
range of EEG signals used for classification consists of a two-second
time window following the cue.

Because dataset I has the simultaneously acquired hand trajectories,
but dataset II does not, the movement onset can be located with the
trajectories in dataset I. In the localization of the movement onset
in dataset I, the 1-order difference of the trajectory is first smoothed
by the 1-order Savitzky–Golay finite impulse response smoothing filter
with time window length 31. The filtered 1-order difference is then
normalized by the maximum absolute value. For trials belonging to the
resting state, a fake movement onset is set to 2.5 s after the trial starts.
Trials in the resting state are rejected if the variances of normalized
trajectory are less than 0.02. In elbow flexion and elbow extension, the
amplitude of the hand trajectory is higher than the other four motions
because the limb moves. The movement onset is set to the location
3

where the normalized trajectory equals the threshold of 0.05. Trials are
rejected manually when the movement onset is highly influenced by
noise contamination. In the other four motions, the function 𝑓 (𝑥) = 𝑎 ∗
𝑒𝑥𝑝(−( 𝑥−𝑏𝑐 )2) + 𝑑 is used to fit the smoothed and normalized trajectory
by tuning the parameters 𝑎, 𝑏, 𝑐, 𝑑 (Duan et al., 2021; Jia et al., 2022).
Trials are rejected if the parameters of the tuned function fulfill 𝑎 <
0.05, 𝑐 > 100, and 𝑑 > 10. The movement onset is set to the time point
whose absolute amplitude equals 0.1.

The EEG signals for classification were acquired from the motor
cortex of the brain, namely 𝐹𝐶𝑧, 𝐶3, 𝐶𝑧, 𝐶4, 𝐶𝑃𝑧, 𝐹3, 𝐹𝑧, 𝐹4, 𝑃3, 𝑃𝑧
and 𝑃4. The raw EEG signals are firstly downsampled to 256 Hz. The
z-normalization is then used to normalize the EEG signals. Because the
MRCP signals are located at the low-frequency bands of EEG signals,
the normalized EEG signals are bandpassed to 0.5∼10 Hz.

2.2. Two-stage-training temporal-spectral network

The two-stage-training temporal–spectral network (TTSNet) is fur-
ther developed based on the FBTRCA method and has four steps: (1)
filter bank division, (2) spatial filtering, (3) temporal decoding, and
(4) feature fusion and classification. The overall framework of both the
FBTRCA and TTSNet is given in Fig. 1, which shows the relationship
and the differences between the two methods.

2.2.1. Filter bank division
The MRCP signals are located at the low-frequency bands of EEG sig-

nals. The approximate range of the low-frequency bands is 0.5∼10 Hz.
To use the information in the frequency domain of MRCP signals, we
proposed a filter bank division method for the low-frequency bands.
The low cut-offs of these bands are fixed at 0.5 Hz. The high cut-
offs of these bands are sorted as an arithmetic sequence from 1 Hz to
10 Hz with step 1 Hz. Therefore, the range of the low-frequency bands,
0.5∼10 Hz, is divided into 𝐹 filter banks, where 𝐹 = 10.

2.2.2. Spatial filtering
After the filter bank division, the MRCP signals are divided into

various filter banks. In each filter bank, the multi-channel signals
contain task-unrelated components because the filter bank division
cannot remove the noise from the original signals. Here, we use the
spatial filter to reject the noise and remove task-unrelated components
from the original signals in each filter bank. A spatial filter is a matrix
𝑊 with size 𝐶 × 𝑃 , where 𝐶 is the number of channels and 𝑃 is an
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Fig. 2. The structure of the temporal decoding component from one filter bank in the FBTRCA method. The EEG signals undergo initial filtering using the spatial filter TRCA to
remove unrelated noise and reduce signal dimensions. To capture the amplitude changes of the filtered signals, the correlation between the filtered signals and the corresponding
filtered grand average MRCPs (shown in the purple box) of their respective classes is computed as the features. These correlation features from all classes are concatenated to
form the output features.
integer smaller than 𝐶. Spatial filtering is the operation that multiplies
the spatial filter and the raw EEG signals. By the matrix multiplication
between the original signals 𝑋 ∈ R𝐶×𝑇 and the 𝑊 , the spatial-filtered
signals 𝑋𝑇𝑊 ∈ R𝑇×𝑃 has a decreased dimension, and the noise is
removed. Here, TRCA is used as the spatial filter, which aims to find
a 𝑊 that maximizes the inter-trial covariances within a class. The
training set belonging to the class 𝑘 is 𝑘 = {𝑋1, 𝑋2,… , 𝑋𝑁}, where
𝑁 is the number of trials of class 𝑘 and 𝑋𝑁 ∈ R𝐶×𝑇 . The inter-trial
covariance of class 𝑘 is computed with the equation:

𝑆𝑘 =
𝑁
∑

𝑖,𝑗=1,𝑖<𝑗
𝑋𝑇

𝑖 𝑋𝑗 +𝑋𝑇
𝑗 𝑋𝑖. (1)

To normalize the inter-trial covariance, the self-covariance is intro-
duced:

𝑄𝑘 =
𝑁
∑

𝑖=1
𝑋𝑇

𝑖 𝑋𝑖. (2)

The spatial filter TRCA is obtained by solving the Eigen equation:

𝐽 =max
𝜔

𝜔𝑇𝑆𝜔
𝜔𝑇𝑄𝜔

(3)

where 𝜔 ∈ 𝐶×1 is the eigenvector. 𝑆 and 𝑄 are the matrices that
summarized the inter-covariances and self-covariances of 𝐾 classes:

𝑆 =
𝐾
∑

𝑘=1
𝑆𝑘, 𝑄 =

𝐾
∑

𝑘=1
𝑄𝑘. (4)

The eigenvectors 𝜔 of maximum eigenvalues are concatenated into
the spatial filter 𝑊 ∈ R𝐶×𝑃 , where 𝑃 is the number of selected
eigenvectors.

2.2.3. Temporal decoding
Temporal decoding serves as a feature extraction mechanism in

both FBTRCA and TTSNet. In FBTRCA, the correlated coefficient is uti-
lized as a feature to quantify the dissimilarities between the unlabeled
EEG signals and the grand average MRCPs. However, the correlation
4

coefficient can only capture stationary temporal characteristics and
cannot effectively handle shifted temporal characteristics. Therefore,
we propose TTSNet, which enhances the temporal decoding capability
of FBTRCA by incorporating a convolutional neural network (CNN).

Correlation coefficient. The correlation coefficient measures the sim-
ilarity of two matrices. In FBTRCA, the two input matrices are the
spatial-filtered unlabeled signals and the spatial-filtered grand average
MRCPs. In Fig. 2, the structure for computing correlation coefficients
in FBTRCA is depicted.

The grand average MRCP of class 𝑘 is obtained from the training set
𝑘 by taking the average of all trials:

𝑋𝑘 = 1
𝑁

𝑁
∑

𝑖=1
𝑋𝑖 (5)

The averaged signals of the grand average MRCPs of 𝐾 classes
is firstly removed from both the grand average MRCPs 𝑋𝑘 and the
unlabeled signals 𝑋 ∈ R𝐶×𝑇 :

𝑋𝑘
& = 𝑋𝑘 − 1

𝐾

𝐾
∑

𝑘=1
𝑋𝑘, 𝑋& = 𝑋 − 1

𝐾

𝐾
∑

𝑘=1
𝑋𝑘 (6)

The correlation coefficient is a normalized point-wise product of
two input matrices. Given two input matrices 𝑋, 𝑌 ∈ R𝐼×𝐽 that fulfill
𝑚𝑒𝑎𝑛(𝑋) = 0 and 𝑚𝑒𝑎𝑛(𝑌 ) = 0, the correlation coefficient is computed
using:

𝑟 = 𝑐𝑜𝑟𝑟(𝑋, 𝑌 ) = 𝑋 ∗ 𝑌
√

(𝑋 ∗ 𝑋) × (𝑌 ∗ 𝑌 )
(7)

where ∗ denotes the summed-up point-wise products of two input
matrices. The symbol × multiplies two constants (𝑋 ∗ 𝑋) and (𝑌 ∗ 𝑌 ).

Three correlation coefficients are computed by taking 𝑋∗ = 𝑋𝑇
&𝑊

and 𝑋𝑘 = 𝑋𝑘
&

𝑇
𝑊 as the inputs.

(1) Correlation Coefficient

𝜌 = 𝑐𝑜𝑟𝑟(𝑋 ,𝑋 ); (8)
1,𝑘 ∗ 𝑘
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Table 1
The model structure of temporal decoding in TTSNet.

Layer Output size Parameter

Input layer [𝐵, 1, 𝐶, 𝑇 ]

ZeroPad2d [𝐵, 1, 𝐶, 𝑇 + 63] (31, 32, 0, 0)
Conv2d [𝐵, 8, 𝐶, 𝑇 ] (1, 64)
BatchNorm2d [𝐵, 8, 𝐶, 𝑇 ]
Conv2d [𝐵, 16, 1, 𝑇 ] (𝐶, 1), 𝑔𝑟𝑜𝑢𝑝𝑒𝑑
BatchNorm2d [𝐵, 16, 1, 𝑇 ]
ELU [𝐵, 16, 1, 𝑇 ]
AvgPool2d [𝐵, 16, 1, 𝑇 //4] (1, 4)
Dropout [𝐵, 16, 1, 𝑇 //4] 0.25

ZeroPad2d [𝐵, 16, 1, 𝑇 //4 + 15] (7, 8, 0, 0)
Conv2d [𝐵, 16, 1, 𝑇 //4] (1, 15), 𝑔𝑟𝑜𝑢𝑝𝑒𝑑
Conv2d [𝐵, 16, 1, 𝑇 //4] (1, 1)
BatchNorm2d [𝐵, 16, 1, 𝑇 //4]
ELU [𝐵, 16, 1, 𝑇 //4]
AvgPool2d [𝐵, 16, 1, 𝑇 //32] (1, 8)
Dropout [𝐵, 16, 1, 𝑇 //32] 0.25

Flatten [𝐵, 16*𝑇 //32]
Linear [𝐵, 𝐾] 𝑏𝑖𝑎𝑠 = 𝐹𝑎𝑙𝑠𝑒

(2) Canonical Correlation Coefficient

[𝐴,𝐵] = 𝑐𝑐𝑎(𝑋∗, 𝑋𝑘) (9)

𝜌2,𝑘 = 𝑐𝑜𝑟𝑟(𝑋∗𝐵,𝑋𝑘𝐵); (10)

3) Normalized Canonical Correlation Coefficient

𝐴,𝐵] = 𝑐𝑐𝑎(𝑋∗ −𝑋𝑘, 𝑋−𝑘 −𝑋𝑘) (11)

3,𝑘 = 𝑐𝑜𝑟𝑟((𝑋∗ −𝑋𝑘)𝐴, (𝑋−𝑘 −𝑋𝑘)𝐴); (12)

here 𝑋−𝑘 is the mean of the spatial-filtered grand average MRCPs of
ll classes except for class 𝐾:

−𝑘 = 1
𝐾 − 1

𝐾
∑

𝑘𝑘=1,𝑘𝑘≠𝑘
𝑋𝑘𝑘. (13)

Therefore, there are 3 × 𝐾 × 𝐹 features in FBTRCA, where 𝐹 is the
umber of filter banks.

onvolution neural network. The correlation coefficients used in FB-
RCA measure the similarity between unlabeled trials and the grand
verage MRCPs, facilitating the temporal decoding of the signals. The
orrelation coefficient in Eq. (7) has two inputs. One is the input EEG
ignal, and the other is the grand average MRCP, which can be viewed
s the pre-trained weights obtained by averaging EEG signals across
rials in the training set. However, the temporal decoding aspect of
BTRCA requires improvement for two reasons:
1) The grand average MRCP is obtained by averaging across trials of
he same class. Noise cannot be completely removed by averaging, and
oise such as spikes will influence the shape of the overall average
RCP obtained. This means that the use of the grand mean MRCP as
weight is not sufficiently robust.

2) In cases where the movement onset cannot be precisely located or
s subject to bias, the MRCP signals may be shifted from the true onset.
orrelation alone cannot effectively address the misalignment caused
y the shifted onset. The issue of misaligned onsets will be further
iscussed in Section 4.

The grand average MRCP, serving as the weight applied to the input
ignals, can be further improved due to its simple derivation through
rial averaging. Replacing the role of correlation in temporal decod-
ng, convolutional neural networks (CNNs) offer two advantages: (1)
rainable weights and (2) shift-invariant properties. For this purpose,
e employ the network architecture of EEGNet in temporal decoding
ue to its superior classification performance. The specific network
rchitecture is provided in Table 2.
5

Table 2
The model structure of classification in TTSNet.

Layer Output size Parameter

Input layer [𝐵, 𝐾, 𝐹 ]

Flatten [𝐵, 𝐾 ∗ 𝐹 ]
Linear [𝐵, 𝐾 ∗ 𝐹 ∗ 2] 𝑏𝑖𝑎𝑠 = 𝐹𝑎𝑙𝑠𝑒
Relu [𝐵, 𝐾 ∗ 𝐹 ∗ 2]
Linear [𝐵, 𝐾 ∗ 𝐹∕∕2] 𝑏𝑖𝑎𝑠 = 𝐹𝑎𝑙𝑠𝑒
Relu [𝐵, 𝐾 ∗ 𝐹∕∕2]
Linear [𝐵, 𝐾] 𝑏𝑖𝑎𝑠 = 𝐹𝑎𝑙𝑠𝑒

2.2.4. Classification
In FBTRCA, the features of all filter banks are sorted and selected

by the mRMR method and then classified by the SVM classifier. The
proposed TTSNet uses a fully connected layer to optimize these features
and classify the features, whose architecture is given in Table 2.

2.2.5. Two-stage training
The TTSNet has two modules that consist of neural networks, the

CNN for temporal decoding and the fully connected layer for clas-
sification. During training the TTSNet, the two modules are trained
separately, i.e., in a two-stage approach. In the first stage, a CNN will
be trained for each of the filter banks, and thus the number of trained
CNNs is 𝐹 . The output of the 𝐹 CNNs is concatenated and flattened. In
the second stage, the fully connected layer is trained with the flattened
features from the CNNs. As given in Table 1, the output layer is a linear
layer of output size 𝐾, where 𝐾 is the number of classes. Therefore, the
network can be trained with the losses between the train label and the
outputs. The train label is used twice in the two-stage training process,
the temporal decoding in Table 1 and the classification in Table 2. In
the first stage, the weights in the fully connected layer are fixed, and
the CNNs are trained with train labels. In the second stage, the weights
in the CNNs are fixed, and the fully connected layer is trained with
train labels.

Summarizing, we can get the training process of the TTSNet. The
training of TTSNet consists of two stages. The first stage involves the
training of the model parameters within each filter bank, including the
spatial filter and the EEGNet. In the second stage, the fully connected
layer will be trained.

In the first-stage training process, the following two points should
be noted:

• Decision on spatial filter : The number of columns (P) of the spatial
filters is a hyperparameter. To decide on the hyperparameter, the
training set is divided into a sub-training set and a validation set.
Then, the accuracy of STRCA is calculated for different values of
the hyperparameter P. The best hyperparameter is the one which
generates the highest accuracy. With the best hyperparameter, the
spatial filter is recalculated for each filter bank with all trials in
the training set. The obtained spatial filter will not be changed in
the following training steps.

• Parameter Tuning on EEGNet : In each filter bank, the EEG signals
are optimized by passing through the spatial filter. The filtered
signals are used as the input of the EEGNet. With the true labels
of the training set, the weights of the EEGNet will be trained.
The trained weights of the EEGNets will not be changed in the
following training step.

Note that the models (spatial filter and EEGNet) are independent across
the filter banks. It means that the spatial filter and the weights of the
EEGNet are not the same between two arbitrary filter banks.

In the second stage, the fully connected layer will be trained.
The original EEG signals are bandpassed into multiple filter banks. In
each filter bank, the model parameters are already trained in the first
stage. After applying the trained models to the original signals, the
input features of the fully connected layer are obtained. The model

parameters of the fully connected layer are finally trained.
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2.3. Compared methods

In our previous work (Jia et al., 2023), the FBTRCA method was
compared against both machine learning methods and deep learning
methods, such as multi-class common spatial pattern (Grosse-Wentrup
and Buss, 2008), minimum distance to mean (Barachant et al., 2012),
WaveNet (Thuwajit et al., 2022), and Deep CNN (Schirrmeister et al.,
2017). The methods based on common spatial pattern have a worse
performance than FBTRCA in the decoding of single-side upper limb
movement. The methods for comparison in this work have two state-
of-the-art methods (FBTRCA, EEGNet) and three baseline methods.

Baseline I: TEGNet Compared to the EEGNet, The TTSNet fuses the
emporal features from all filter banks. To bridge the gap between
TSNet and EEGNet in the comparison, we additionally introduce the
asked-related EEGNet (TEGNet). The TEGNet consists of the spatial
ilter TRCA and the EEGNet, which processes only signals from one
ilter bank.

aseline II, OTSNet The TTSNet is trained in two steps. To show
he necessity of the two-stage training, the performance of TTSNet is
ompared to the one-stage-training temporal–spectral neural network
OTSNet). In OTSNet, the EEGNet and the fully connected layer are
rained simultaneously.

aseline III, TTSSVM In TTSNet, two modifications have been made
o FBTRCA, the temporal decoding with EEGNet and the classification
ith the fully connected layer. To observe the effects of the two modi-

ications, the fully connected layer is replaced with the SVM classifier,
hich is used in FBTRCA.

. Result analysis

.1. Parameter setting

The classification tasks in this experiment include (1) the binary
lassification between two motions, e.g., elbow flexion and elbow ex-
ension, and (2) the multi-class classification among all the motions
n each dataset. In both classification tasks, the two datasets are split
nto the training set and the testing set by ten-fold cross-validation.
he mean and standard deviation of the accuracy of ten folds are used
o evaluate the performance of the mentioned classification methods.

two-sample t-test is also used to measure the statistical significance
f the improvement between the proposed method and the compared
ethods.

The training process of EEGNet, TEGNet, OTSNet, and TTSNet all
as the parameters: learning rate (0.001), batch size (50), optimizer
Adam), and loss function (cross-entropy). In TTSNet, the network
s trained in two stages. The CNN module is firstly trained for 300
pochs. The classification accuracy has converged within the number
f training epochs. The model weight of the CNN module is then not
pdated in the following training process of the fully connected layer.
n the training process of the second module, the Adam optimizer is
dditionally equipped with the weight decay (L2 penalty) of 0.1 to
nsure the early stop of the training process.

.2. Result

In this section, five methods are compared to the proposed TTSNet
ethod, including FBTRCA, EEGNet, TEGNet, OTSNet and TTSSVM.
EG signals from Dataset I and Dataset II are used in three cases: (1)
ataset I(a)-Dataset I with the movement onset located, (2) Dataset

(b)-Dataset I without the located movement onset and (3) Dataset
I without the located movement onset. In this section, we will used
he dataset I(a) to analyze (1) the simplified network architecture in
emporal decoding, (2) the influence of the temporal decoding and
6

lassifier, and (3) the necessity of the two-stage training process. The p
overall performance of these methods in the three cases is compared
finally.

Before the statistic analysis in the three cases, we first compare the
EEG signals before and after spatial filtering (with task-related compo-
nent analysis) in the channel space and the source space, which is given
in Fig. 3. The figures for the channel space are plotted with EEGLab (De-
lorme and Makeig, 2004). The figures for the source space are plotted
with Brainstorm (Tadel et al., 2011). During plotting the source space
figures, the brain anatomy used is BCI-DNI BrainSuite (Joshi et al.,
2022). The surface is segmented by the boundary element method
with Brainstorm (Frijns et al., 2000). The source spaces figures are
finally given by the standardized low-resolution brain electromagnetic
tomography method (Pascual-Marqui, 2002).

3.2.1. Simplified neural network in temporal decoding
In TEGNet, the multi-channel EEG signals are first passed by a

spatial filter, the filtered signals are then devoted into the EEGNet.
Compared to EEGNet, the TEGNet reduces the dimension of EEG signals
with a linear transform of size 𝐶×𝑃 . This linear transform can be easily
btained by solving the Eigen equation in Eq. (3) with the training
et. With the spatial filtering, the input of the neural network part
n TEGNet has fewer number of channels. To show the equivalence
f EEGNet and TEGNet, Fig. 4 compares the multi-class classification
erformance in the dataset I(a). The average classification accuracy is
.4161 ± 0.0748 and 0.4205 ± 0.0776 on average for EEGNet and
EGNet, respectively.

.2.2. Neural networks in temporal decoding and classifier
Before analyzing the temporal decoding, the role of the feature

election in FBTRCA must be clarified. In our previous work (Jia et al.,
023), we found that when the number of selected features is greater
han a threshold after feature sorting, the classification accuracy has
o significant differences from the case in which all the features are
sed. The feature selection in the multi-class FBTRCA serves for feature
imension reduction. In this work, to avoid the discussion on the
umber of selected features, we ignore the computation load and all
he features are fed into the SVM classifier.

The TTSNet has two modifications on the FBTRCA method, in-
luding the EEGNet in the temporal decoding and the fully connected
ayer in the classification. Both modifications may lead changes to the
lassification performance. To check the influence of modified temporal
ecoding on the classification performance, the TTSSVM is compared
o the proposed TTSNet. Ignoring the feature selection as mentioned
bove, the only difference between FBTRCA and TTSSVM is the tem-
oral decoding part. The difference between TTSSVM and TTSNet is
he classification part. Fig. 5 illustrates the classification comparison
f FBTRCA, TTSSVM and TTSNet. It shows that the modifications
n the temporal decoding and the classifier can increase the average
lassification accuracy with 1.92% and 2.03%, respectively. In total,
TSNet has an increase of 3.95% on the FBTRCA method.

.2.3. Two-stage-training process
The training processing of parameters in the TTSNet adopts a two-

tage process. In the first stage, the spatial filter is learned by solving
he Eigen equation, and the parameters in EEGNets are learned with the
iltered signals as inputs and the true labels as outputs. In the second
tage, the learning of parameters in the EEGNet is turned off and the
ully connected layer is trained. OTSNet holds the same structure as
TSNet but parameters in both EEGNet and fully connected layer are
rained simultaneously. Fig. 6 compares the performance differences
etween OTSNet and TTSNet. The reason why TTSNet has a better

erformance than OSTNet is further explored in the discussion.
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Fig. 3. Comparison of the grand average MRCP signals (0.5∼10 Hz) before and after the spatial filtering. This figure visualizes the grand average MRCP signals of elbow flexion
of subject 1 from dataset I in both the channel space and the source space. The 0 ms in the figure denotes the movement onset. When visualizing the signals after spatial filtering,
the problem is that the number of channels of filtered signals is decreased. To solve this problem, the filtered signals 𝑋𝑇𝑊 are multiplied by the inverse spatial filter 𝑊 𝑇 , and
we get 𝑋𝑇𝑊𝑊 𝑇 . 𝑋𝑇𝑊𝑊 𝑇 reserves the filtered signals to the original channels, whose number is the same as the channels before spatial filtering.

Fig. 4. Multi-class classification performance comparison between EEGNet and TEGNet, validated in dataset I(a). EEGNet and TEGNet have an equivalent performance in average.

Fig. 5. Multi-class classification performance comparison among FBTRCA, TTSSVM and TTSNet.
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Fig. 6. Performance difference between the one-stage-training process and the two-stage-training process in the multi-class classification task.
Table 3
Overall average accuracy comparison.

Dataset Dataset I(a) Dataset I(b) Dataset II

Binary Multi-class Binary Multi-class Binary Multi-class

Chance level 0.5301 ± 0.0000 0.1594 ± 0.0000 0.5000 ± 0.0000 0.1429 ± 0.0000 0.5000 ± 0.0000 0.2000 ± 0.0000
FBTRCA 0.7487 ± 0.1250 0.4193 ± 0.0780 0.7414 ± 0.1258 0.3878 ± 0.0664 0.6647 ± 0.1190 0.3975 ± 0.0675
EEGNet 0.7340 ± 0.1246 0.4161 ± 0.0748 0.7246 ± 0.1161 0.3889 ± 0.0729 0.6718 ± 0.1160 0.4057 ± 0.0689
TEGNet 0.7176 ± 0.1252 0.4205 ± 0.0776 0.7126 ± 0.1189 0.3843 ± 0.0724 0.6627 ± 0.1148 0.3905 ± 0.0847
OTSNet 0.7521 ± 0.1211 0.4358 ± 0.0780 0.7375 ± 0.1171 0.3946 ± 0.0633 0.6857 ± 0.1135 0.4079 ± 0.0743
TTSSVM 0.7659 ± 0.1182 0.4385 ± 0.0702 0.7494 ± 0.1126 0.4017 ± 0.0633 0.7021 ± 0.1155 0.4121 ± 0.0736
TTSNet 0.7707 ± 0.1168 0.4588 ± 0.0724 0.7526 ± 0.1122 0.4141 ± 0.0679 0.7075 ± 0.1159 0.4311 ± 0.0700
Table 4
Two-sample t-test results: the 𝑝-values between TTSNet and the other methods in dataset I(a) are shown.
Subject 1 2 3 4 5 6 7 8

FBTRCA 0.0044 0.0038 0.3005 0.0604 0.2550 0.5650 0.1586 0.8434
EEGNet 0.0193 0.0556 0.0556 0.1243 0.5583 0.4159 0.2103 0.3306
TEGNet 0.0699 0.0421 0.9020 0.1536 0.3061 0.5191 0.1057 0.5693
OTSNet 0.1260 0.0175 0.4613 0.5229 0.8776 0.6636 0.3798 0.4872

9 10 11 12 13 14 15
0.2687 0.4238 1.0000 0.9191 0.2666 0.2218 0.2380
0.3097 0.9095 0.1147 0.7911 0.1250 0.0141 0.0747
0.0934 0.2685 0.4377 0.2666 0.6035 0.0014 0.2546
0.2766 0.6061 0.3253 0.3332 0.7159 0.2482 0.2612
3.3. Performance summary

In Table 3, the overall classification accuracies are listed, including
binary and multi-class results in three dataset cases. Table 4 lists the
𝑝-values between TTSNet and the other methods in dataset I(a). The 𝑝-
value is calculated using the two-sample t-test. The two sets of values
passed to the two-sample t-test function are the ten values of the
accuracy of the proposed TTSNet and the ten of the compared methods,
respectively. In the dataset I(b) and the dataset II, the movement onset
cannot be exactly located. The misalignment of the movement onset
has a negative influence on the multi-class classification. The reason
of the negative influence of the misalignment will be analyzed in the
discussion. The TTSNet helps to improve the multi-class classification
in dataset I(b). However, the classification performance in dataset I(b)
still has a distance from the performance of dataset I(a). In summary,
TTSNet contributes to the classification performance of FBTRCA by
enhancing the temporal decoding process.

4. Discussion

In this work, our focus lies on the multi-class classification of
single-side upper limb movements. We enhance the performance of
our previously proposed FBTRCA method by introducing temporal
8

decoding using a convolutional neural network. To underscore the
contributions of this work, it is essential to discuss three key points:
(1) the relationship between movements of the double-side and single-
side of the limb, (2) the rationale for replacing correlation with a
convolutional neural network, and (3) the novelty of the two-stage
training process.

4.1. Single-side and double-side upper limb movement

The multi-class classification of limb movements involves two dis-
tinct tasks: (1) classification of multiple limbs and (2) classification of
multiple movements on the same limb.

In the first task, classification methods are developed based on
the brain phenomenon known as event-related desynchronization/
synchronization (ERD/ERS). This phenomenon involves power changes
on the brain scalp, with a decrease in power on the same side of the
brain as the executing limb and an increase on the contra-side half of
the brain. When different limbs execute movements, the activated brain
regions vary accordingly. The spatial filter known as common spatial
pattern (CSP) is employed in this task to distinguish the activated brain
regions (Zhang et al., 2019). The classification methods for this task
focus on power changes in multiple brain regions within the frequency
range of 8 to 40 Hz.
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Table 5
The difference between FBTRCA and FBCSP in limb movement classification.
Module Task 1 Task 2

Task Double-side Limb single-side Limb
Brain activity Motor imagery movement-related cortical potential
Frequency range 8–40 Hz 0.5–10 Hz
Method FBCSP (Ang et al., 2008) FBTRCA (Jia et al., 2022, 2023)
Filter bank division 8–12 Hz, 12–16 Hz, . . . , 36–40 Hz 0.01–1 Hz, 0.01–2 Hz, . . . , 0.01–10 Hz
Spatial filter in each filter bank Common spatial pattern Task-related component analysis
Feature type in each filter bank Log variances Correlations
Feature fusion of all filter banks Concatenation
Feature selection method Mutual-information based feature selection
In the second task, an intuitive idea based on ERD/ERS is that
ower changes evoked by movements of the same limb are locate in the
djacent regions. Therefore, the classification of multiple movements
n the same limb relies on the adjacent activated brain regions. In
he adjacent brain regions, the spatial differences are more difficult
o be distinguished than that in ERD/ERS. The temporal information
re much more important for the single-side limb movements. In this
ask, the differences between classes are reflected in the grand average
RCPs of each class. After averaging the signals across trials, the

ignals are smoothed and limited to the frequency range of 0.5 to 10 Hz.
In both tasks, the filter-bank-based methods are used to extract and

ptimize the features, i.e. the FBTRCA in single-side limb and the filter
ank CSP (FBCSP) in double-side limbs (Jia et al., 2022; Ang et al.,
008). The relationship between the two methods is shown in Table 5.
he main difference between them is the feature types instead of the
eature selection method.

In FBCSP, the log variances are computed from the non-overlapped
arrow bands, indicating the powers in the narrow band. In some nar-
ow bands, the power will change when carrying out motor imagination
r execution. Compared to the narrow bands with unchanged powers,
he narrow bands with changed powers are sparser. A more classical
eature presentation is given in temporal-constraint sparse group spatial
attern (TCSGSP) (Zhang et al., 2019). In TCSGSP, based on the filter
ank division in FBCSP, the filter banks are divided into multiple
liding time windows. For instance, the power keeps unchanged in
he time window 0–1 s but it may change in the time window 1.25–
.25 s. Therefore, we think that the log variance features have a
parse representation in double-side limb movements. In other words,
ommon spatial patterns are extracted from multiple frequency bands
nd sliding windows. The resulting features indicate differences (‘1’) or
o differences (‘0’), representing a sparse ‘0’ and ‘1’ problem. Feature
election in double-side limb movements focuses on selecting the ‘1’
eatures against the ‘0’ features.

In FBTRCA, the correlations are computed form the low-frequency
ands. Note that the low cut-offs of these bands in Table 5 are fixed
o a small value 0.5 Hz and the high cut-offs increase in an arithmetic
equence. In single-side limb movement, the main differences among
lasses are the signal trend and the trend is located in the low-frequency
ands. Because the low-frequency bands are included in all filter banks,
he accuracy of STRCA in these banks are close to each other but
he best one is unknown. As explained in Jia et al. (2022), the best
igh cut-off for STRCA is difficult to locate due to the individual
ifferences. FBTRCA is proposed to avoid the search of best high cut-
ff by combining all features from these filter banks. For instance, the
lassification accuracy of STRCA ranges from 0.85 to 0.95 across these
ilter banks. After concatenating the features of all filter banks, we
ave the features with the highest accuracy and we do not need to
now to which filter bank it belongs. Because the number of features
ncreases after concatenation, we used the mutual-information-based
eature selection method, i.e. mRMR, to reduce the feature dimension
or the final classification. In both FBTRCA and FBCSP, the feature
election method is used to reduce the increased feature dimension,
hich is induced by the concatenation step.

Compared to the sliding time window used in TCSGSP for double-
ide limb movements, it is difficult to apply the sliding window on
9

FBTRCA. The reason is that signal trend in MRCP is spread over the
time dimension around the movement onset, instead of the sparse rep-
resentation as in double-side limb movement. A more suitable approach
is to adjust the weights applied to the signals in the correlation. In
STRCA and FBTRCA, the weights are not trainable by parameter tuning.

4.2. From correlation to convolutional neural network

In our previously proposed STRCA method, both the spatial filter
and the grand average MRCP were obtained from the training set. The
grand average MRCP was computed by averaging EEG trials belonging
to the same class in the training set. In the correlation features of an
EEG trial, both the grand average MRCP and the EEG trial were first
optimized with the spatial filter, and then the correlation between the
EEG trial and the grand average MRCP was computed. The correlation
value represented the sum of the weighted signals in the EEG trials,
where the weights were determined by the grand average MRCP. Con-
sequently, the grand average MRCP played a crucial role in extracting
the correlation features. Averaging the signals in the grand average
MRCP aimed to reduce the influence of noise in the original EEG trials.
As illustrated in Fig. 7, the noise in the relatively high-frequency bands
was effectively eliminated in the grand average MRCP.

However, the averaging operation can introduce inaccurate grand
average MRCPs due to misalignment of movement onsets. To simplify
the explanation of the misalignment problem, we made two assump-
tions. Firstly, we simplified the ideal curve of MRCP signals (an increase
followed by a decrease) as a sine function. Secondly, we assumed that
the noise in the EEG signals is uniformly distributed along the timeline
and are fully eliminated by averaging.

In the training set of a class, two branches were assumed, each with
an equal number of trials, and the noise was removed by averaging the
trials within each branch. The movement onsets of trials within each
branch were strongly aligned. However, the movement onsets between
the two branches were not the same, and this was the only difference
between them. After averaging the trials within each branch, Fig. 8(a)
illustrates the latency lag between the two branches. Considering that
both branches belong to the training set, the final grand average MRCP
is obtained by averaging the MRCPs from the two branches. However,
the latency lag between the two branches can influence the shape of the
grand average MRCP, as shown in Fig. 8(b). The latency lag distorts the
shape of the grand average MRCP in two ways: by reducing the highest
amplitude/power and by introducing bias in the timing.

In the computation of the real grand average MRCP, the situation
becomes more complex as the movement onsets of all trials may not be
the same, unlike the two distinct movement onsets illustrated in Fig. 8.
In cases where the movement trajectory is available, such as in dataset
I(a), the movement onsets can be localized, and the EEG signals before
and after the movement onset can be sliced for the classification task.
By individually locating the movement onsets for all trials, the latency
lag depicted in Fig. 8(a) can be minimized. However, in most cases,
the movement trajectories are not recorded simultaneously, and the
EEG signals are typically sliced from the two-second time window after
the cue to execute the movement. Due to variations in the reflection
time from the brain to the limb, the distance between the movement
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Fig. 7. The difference between the grand average MRCP and an EEG trial. This figure is an example whose data is extracted from the channel 𝐶𝑧 of the elbow flexion.
Fig. 8. Influences of misaligned movement onset on the grand average MRCP. The ideal grand average MRCP is simplified into a sine wave and noise is diminished to zeros after
averaging across trials. The training set consists of two branches and two branches have the same number of trials.
onset and the cue to execute the movement differs across trials, and this
cannot be precisely measured. Consequently, this leads to distortions in
the ideal grand average MRCP, as shown in Fig. 8(b).

Although the movement onset in dataset I(a) can be localized with
the movement trajectory, we acknowledge the possibility of misalign-
ment caused by the inaccurate localization of the onset and the un-
measurable reflection time from the brain to the limb. To mitigate the
influence of the distorted grand average MRCP on feature extraction,
we propose replacing this weight (the grand average MRCP) with a
more trainable weight (EEGNet).

4.3. Two-stage-training process

In the proposed TTSNet method, two modifications are applied to
the previous FBTRCA method: the utilization of EEGNet in the temporal
decoding and the incorporation of fully connected layers in the classi-
fication. During the training of TTSNet, the parameters of the EEGNet
and the fully connected layer are trained in two separate steps. This
two-stage training process is implemented to fulfill the requirements of
the filter bank technique in MRCP signal processing.

The two-step-training process is motivated by FBTRCA. Two points
must be emphasized during the development of the two-stage-training
process.

The first point is that the STRCA is used to extract the features from
a single filter bank. The correlation features in STRCA can be used to
predict the classes with signals in the single filter bank. When changing
from the correlation to convolution, the STRCA is replaced with the
TEGNet (Task-related component analysis + EEGNet). The TEGNet is
supposed to be able to predict the classes within the filter bank as well.
Therefore, in the first stage, we need to ensure the TEGNet are trained
and fully converged.
10
The second point is that the feature selection method is used to
optimize the feature dimension after the feature concatenation. In the
TTSSVM, the followed SVM classifier is used to predict the classes. In
the TTSNet, the fully connected layer is used to reduce the feature di-
mension and predict the classes. Without ignoring the feature selection,
it is difficult to decide on how many features should be fed into SVM,
because the number of features in FBTRCA and TTSNet are not the
same after the feature extraction from multiple bands. The number of
features is 3𝐾𝐹 in FBTRCA and the number of features is 𝐾𝐹 in TTSNet,
where 𝐾 is the number of classes and 𝐹 is the number of filter banks.
Because the feature selection process in FBTRCA is to reduce the feature
dimension but has a low improvement on the classification accuracy,
we simply ignore the feature selection process in the two-stage process.

4.4. Reasons to develop single-side limb movements

The development and application in identifying single-side limb
movements and supporting the rehabilitation of stroke patients hold
significant implications and potential consequences. In the traditional
BCI applications, the control commands are mainly generated based
on the visual-evoked potential and double-side limb movements. Com-
pared to the visual-evoked potential, brain activities evoked by limb
movements are more natural for the stroke patients to generate control
commands because we are used to interact with the external envi-
ronment by limb movement. The breakthrough in the single-side limb
movement enriches the interaction approaches between the brain and
the environment, and thus help to assist the rehabilitation of the stroke.

5. Conclusion

In this work, we propose TTSNet, a method that leverages both
temporal and spectral information to decode patterns from MRCP
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signals. TTSNet integrates the temporal decoding capability of EEGNet
into the FBTRCA method, enabling the extraction of distinct features
that capture both temporal and spectral characteristics. This method is
applicable to both binary and multi-class classification tasks for upper
limb movements. Our results demonstrate that TTSNet outperforms
both FBTRCA and EEGNet in decoding pre-movement patterns. The
findings of this study have implications for the rehabilitation of in-
dividuals with disabled or weak upper limbs. The code repository for
this work can be accessed via the following link: https://github.com/
plustar/Movement-Related-Cortical-Potential.git.
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